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My research is in the interaction between combinatorics and the theory of computation, broadly speaking.
Currently I have two ongoing projects: in one I investigate the computational content of pigeonhole principles
for countable structures, and in the other I develop a new complexity measure for finite strings using
probabilistic automata and study its properties.

1. Indivisibility and Weihrauch complexity

This project lies in the intersection of Ramsey theory, reverse mathematics, computability, and computable
structure theory (a.k.a. computable model theory). A countable structure S is indivisible if for every
presentation A of S (i.e., every isomorphic copy of S) and every coloring c of the elements of A using finitely
many colors, there is a monochromatic substructure isomorphic to S. Both (N, <) and (Q, <) are indivisible;
the indivisibility of N is just the infinite pigeonhole principle. On the other hand, (Z, <) is not indivisible
because if one colors all positive numbers red and all negative numbers blue, then every monochromatic set
has either a greatest or a least element. Many other indivisible structures exist, such as

• R, the Rado graph;
• Hn, the universal countable homogeneous n-clique-free graph (Henson graph), for each n;
• E n, n− 1 infinitely refining equivalence relations on Nn;
• Many other Fräıssé limits; ordinals of the form ωα; nonscattered linear orders; etc.

My overarching goal is to investigate the computational difficulty of finding a substructure W witnessing
the indivisibility of S, given A and c, and to compare this difficulty among various S. For instance, some
structures are computably indivisible (CI), meaning there is always some W computable from A and c. Then
N, Q, R, and ωα are CI, but I showed that Hn isn’t for any n ≥ 3 [3]; neither is E 2, as follows from another
of my results [4, Theorem 5.1].1 However, there should arguably be a more nuanced classification even among
CI structures. Is it really just as easy to compute a monochromatic subcopy of Q from a given coloring as it
is for N?

Weihrauch reducibility. We can make this vague question precise using Weihrauch reducibility, a framework
originating in computable analysis in the late 1980s which has been widely used in reverse mathematics since
the early 2010s (although its specific application to indivisibility of structures other than N is new to my
dissertation). A problem is a partial multivalued function P on Baire space NN, viewed as mapping instances
of the problem to solutions of the instance. For example, if S is an indivisible structure, then its indivisibility
problem IndS is the problem whose instances are presentations A of S together with colorings c of A, and for
which a solution to ⟨A, c⟩ is any c-monochromatic subcopy W of A, identified with its characteristic function.
We can think of IndS as a “black box” capable of finding a suitable W given any coloring and presentation.
One can also consider IndSk which restricts IndS to colorings bounded by k. Next, if P and Q are any two
problems, then P is Weihrauch reducible to Q (written P ≤W Q) if, intuitively speaking, every instance of
P can be solved by a single application of Q, up to some uniformly computable “glue” needed to translate
between P and Q. This glue takes the form of Turing functionals ∆ and Ψ, where ∆ transforms instances of
P to instances of Q and Ψ translates solutions of Q to solutions of P (Ψ additionally has oracle access to the
original instance of P ; see [1] for details).

We have IndN ≤W IndQ: if c is any coloring of N, and we simply copy c over to Q by identifying rationals
with their indices in some enumeration of Q, then IndQ finds a densely ordered monochromatic set—in
particular an infinite monochromatic set, which is enough to solve IndN. On the other hand, it turns out
that IndQ ̸≤W IndN, according to independent work of several authors (including myself). Hence it is, in a

1That E 2 is not CI was already shown in unpublished work of Ackerman, Freer, Reimann, and Westrick by a direct construction,
but the cited result strengthens this.
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completely rigorous sense, strictly harder to find a monochromatic subcopy of Q than it is for N. But this is
not the case for the Rado graph: the equivalence IndR ≡W IndN has been obtained as part of an ongoing
project with Damir Dzhafarov and Reed Solomon.

My research so far. Weihrauch reducibility can reveal subtle distinctions between combinatorial principles
which may not be otherwise apparent. My work as represented in [4, 6] mainly focused on teasing apart
these distinctions among the indivisibility problems for several particular structures, separating them from
some standard benchmark problems in the Weihrauch lattice and from other problems studied in reverse
mathematics. For example, I showed [4, Theorem 5.1] that the Weihrauch degree of IndE 2 is strictly between
those of two widely studied versions of Ramsey’s theorem for pairs, RT2 and SRT2, whose logical separation
was a major open problem in reverse mathematics until a few years ago (see e.g. [2] for details). I also showed
that IndQ is too weak to solve the benchmark problem CN, which can be viewed as finding a monochromatic
rational interval given a coloring for which there is one [4, Theorem 4.1]; but on the other hand that it cannot
be solved by any problem which is “c.e. guessable” in a suitable sense, including CN [4, Theorem 4.5].

Future work. One of my broad goals is to use Weihrauch reducibility to establish correspondences that allow
one to identify indivisibility problems with other types of computational tasks arising from logic or computable
analysis. The hope is to deepen understanding both of the indivisible structure and of the computational task,
by bringing ideas and methods across the Weihrauch bridge which would not otherwise suggest themselves.
As an example of such a correspondence, Indω2 can be viewed as the problem which, given a finite list of
questions of the form “are infinitely many of these given sets infinite?”, will tell you one of the questions for
which the answer is “yes” (as long as there is at least one such question). Roughly speaking, IndE 2 does the
above and also outputs a list of infinite sets witnessing the answer.2 This aspect of the project is in its very
early stages, but I believe it to have the potential to produce deep insights.

Another objective is to develop a more general framework with the aim of understanding properties shared
by all indivisibility problems, or at least by large classes of them. For instance, every indivisibility problem is
a cylinder, meaning that one can always solve IndS while simultaneously encoding any given infinite string
into every solution. But it quickly becomes difficult to prove very much without additional hypotheses on
S—which leads to considerations from computable structure theory, the study of computability-theoretic
properties of structures and their interaction with model theory. The indivisibility problems of so-called
uniformly computably categorical (u.c.c.) structures, including Q and E 2, are particularly well-behaved with
respect to ≤W, but there are also many non-u.c.c. structures S with IndS ≡W IndQ, including every strongly
η-like linear order (e.g., nQ). More investigation is needed to find precisely when such rigidity can occur.

2. Probabilistic automatic complexity

The Kolmogorov complexity as a string function is well-known to be noncomputable. This has motivated a
number of authors to introduce computable string complexity measures using weaker models of computation
than a general Turing machine. Particularly appealing for their hands-on combinatorial flavor are those
due to Shallit and Wang [9] and Hyde [7], which use DFAs and NFAs, respectively. The DFA complexity
AD(x) is the least number of states of a DFA which uniquely accepts x among strings of length |x|. The
NFA complexity AN (x) is analogous but with the extra requirement that the witnessing NFA have a unique
accepting path of length |x|. (See e.g. [8] for more details.)

In [6, 5], I introduced a new complexity measure in the same spirit but based on probabilistic finite-state
automata (PFAs). A PFA is like a DFA where the state transitions have probabilities, and so each word
x is given a probability of acceptance ρ(x) rather than a binary acceptance or rejection as with a DFA or
NFA. Then instead of asking for x to be the unique string accepted of its length, we ask for it to be the
unique string most likely to be accepted. It will be convenient to define the gap function of a PFA M as
gapM (x) = min{ ρM (x)− ρM (y) : |y| = |x| and y ̸= x }. This measures the degree to which M separates x
from other strings of the same length, with a positive gap being equivalent to x having the unique highest
probability:

2Making the second statement fully rigorous is delicate and the formal relationship between the two problems is not yet clear.
Ind E 2

k
more precisely corresponds to the problem which, given k Π0

2 sets whose union is ω, outputs an infinite subset of one of
them and tells you which one it is a subset of. This is also part of the ongoing work with Dzhafarov and Solomon mentioned
above.
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Definition 2.1. The PFA complexity of a string x, AP (x), is the least number of states of a PFA M with
gapM (x) > 0.

AD and AN are computable since there are only finitely many DFAs or NFAs of a given size over a given
alphabet, and one can carry out a brute-force search of automata with up to |x|+ 1 states (or less for NFAs).
AP also turns out to be computable, although the reason is not so obvious; a model-theoretic proof was
suggested by Bjørn Kjos-Hanssen and appears in [5].

AP generally seems to be much lower than AN . For instance, as shown by Hyde, the strings with AN = 2
are exactly those of the form imj, ijm, (ij)m, or (ij)mi for m ≥ 1, but

Theorem 2.2. If x ∈ {i, j}∗, then AP (x) = 2 if and only if x is of the form
injm, injmi, in(ji)m, or in(ji)mj for some n,m ≥ 1.

(We have AP (in) = AN (in) = 1.) The proof of this theorem in [5] actually shows that a single PFA usually
witnesses the complexity of an infinite family of strings of similar structure, e.g., { 0n1m : m ≥ 1 } for a fixed
n. But in general, one heuristically expects gap(x) to decrease as |x| increases. This can be seen through the
lens of the correspondence between PFAs and affine iterated function systems (IFSs) exploited in the proof of
Theorem 2.2: all associated IFSs are contractive, so all orbits converge exponentially to the attractor. Then it
may be that a witness for AP (x) does not distinguish x especially well from other strings of its length, in that
their acceptance probabilities are very close together. We can try to get around this by introducing a required
lower bound on gap(x):

Definition 2.3. The PFA complexity of x with gap γ, AP,γ(x), is the least number of states of a PFA M
such that gapM (x) > γ. Here γ may be any element of [0, 1). (Hence AP,0 = AP .)

Then AP,γ is γ-computable for all γ ≥ 0, and in fact uniformly computable almost everywhere as a function
of x and γ [5, Section 5]. (How efficiently they can be computed is open, but the proof uses real quantifier
elimination, so it would be quite surprising to do better than the state of the art there.)

Theorem 2.2 is proven by an exhaustive analysis of the dynamics of IFSs associated with 2-state PFAs
which would almost certainly be infeasible to imitate for larger PFAs, or even for 2-state PFAs over a larger
alphabet. The original motivation of that theorem was to show that AP can be greater than 2, but it is still
unknown how large it can get:

Question 2.4. Is AP unbounded? If not, what is its maximum value (overall or over a given alphabet)?

A brute-force search using SageMath has shown that AP (x) ≤ 3 for all x ∈ {0, 1}≤10. I suspect that
AP (x) ≤ 3 for all x, but that AP,γ(x) is unbounded for all γ > 0. The most promising attacks on the second
conjecture have attempted to exploit the observation mentioned above that for a generic PFA M witnessing
the complexity of each member of a sequence (xn), one expects gapM (xn) → 0 as n → ∞. But this is the
case only generically, not always, and one runs into technical issues when making any such argument precise.
Further insights into the behavior of gapM (x) and its interaction with the topology of the space of PFAs
would be helpful for this (and of independent interest). If AP or AP,γ turn out to be unbounded, one could
define a notion of fractal dimension of finite or infinite sequences using either quantity and see if it could
be related to existing such notions which use finite automata and transducers. One could study the set of
AP -random strings, i.e., those with highest possible complexity for their length. There are also several other
approaches to PFA complexity floated in [5] whose properties are worth investigating.
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