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A Note on the Indivisibility of the Henson Graphs

Kenneth Gill

Abstract The Rado graph is well-known to be indivisible, that is, for any finite
coloring of it there is a monochromatic set isomorphic to the whole graph. The
n-clique-free Henson graph shares this property for every n ≥ 3. A set witness-
ing the indivisibility of the Rado graph can always be computed from a given
coloring, but we show that this is false for the Henson graphs.

1 Introduction

The Rado graph is, up to graph isomorphism, the unique countable undirected graph
that satisfies the following property: if A and B are any finite disjoint sets of vertices,
there is a vertex not in A or B which is connected to every member of A and to no
member of B. It is homogeneous and universal for the class of finite graphs.

Our interest here lies with the closely related family of Henson graphs, introduced
by C. Ward Henson in 1971 [6]. For each n≥ 3, the Henson graph Hn is up to isomor-
phism the unique countable graph which satisfies the following property analogous
to that characterizing the Rado graph: for any finite disjoint sets of vertices A and
B, if A does not contain a copy of Kn−1, then there is a vertex x /∈ A∪B connected
to every member of A and to no member of B. (Here we write Km for the complete
graph on m vertices.) Hn is homogeneous and universal for the class of Kn-free finite
graphs.

We presume familiarity with the basic terminology of computable structure the-
ory, as for example in the first chapter of [8]. A structure S is said to be indivisible
if for any presentation A of S and any coloring c of domA with finite range, there
is a monochromatic subset of domA which induces a substructure isomorphic to
S . We call the monochromatic subset in question a homogeneous set for c. S is
computably indivisible if there is a homogeneous set computable from A and c, for
any presentation A and coloring c of domA .

For the rest of the paper, we fix a computable presentation of Hn with domain
N and thus focus only on the coloring. Viewed as a structure in the language of a
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single binary relation, the Rado graph is indivisible, and computably so. The proof is
folklore, but we sketch it here for completeness: suppose the Rado graph is colored
red and blue, and pick any red vertex to start. Attempt to build a red subcopy of the
Rado graph with a greedy algorithm that at each stage searches for new red vertices
satisfying its characteristic property, as applied to each pair of disjoint sets of red
points previously chosen. If this algorithm fails to produce a complete copy of the
Rado graph, then there must be disjoint finite sets A and B such that all vertices
connected to every member of A and to no member of B are blue. The set of such
vertices is computable for any fixed A and B, and one can check that any set of that
form induces a subgraph isomorphic to the whole Rado graph.

Each of the Henson graphs is also indivisible. Henson himself proved that a
weak form of indivisibility holds for each Hn, and full indivisibility was first shown
for n = 3 by Komjáth and Rödl [7] and later for all n by El-Zahar and Sauer [3].
(A clarified and corrected version of the proof of Komjáth and Rödl can be found in
[5].) Work on the Ramsey theory of the Henson graphs has progressed beyond vertex
colorings; recently, Natasha Dobrinen has undertaken a deep study of the structure
of Hn and shown that for each n, Hn has finite big Ramsey degrees, developing many
novel techniques in the process [1, 2].

Our far more modest result concerns only vertex colorings and states that unlike
the Rado graph, none of the Henson graphs is computably indivisible:

Theorem 1 For every n ≥ 3, there is a computable 2-coloring of Hn with no c.e.
homogeneous set.

This theorem naturally raises the question of how complicated a homogeneous set
for a coloring of Hn can or must be. An analysis of the proof of El-Zahar and Sauer
in [3] shows that the (2n− 3)rd jump of a coloring always suffices to compute a
homogeneous set for a coloring of Hn. However, one may see from a careful reading
of Komjáth and Rödl’s argument [7] that the first jump of the coloring is enough
when n = 3, giving a strictly better upper bound on the arithmetic complexity in this
case. It is currently unknown whether a similar discrepancy exists for any n ≥ 4.
Where vertex colorings of Hn fall on the spectrum of coding vs. cone avoidance is
another intriguing question.

2 Proof of Theorem 1

Write x ∈ G, for a graph G, to mean x is a vertex of G. By abuse of notation, if V ⊂ G
is any set of vertices, we will identify V with the induced subgraph of G on V . Fur-
thermore, we always identify natural numbers with the elements of Hn they encode
via our fixed computable presentation of Hn, and sets of naturals with the correspond-
ing induced subgraphs of Hn. If A = {a1 < · · · < an} and B = {b1 < · · · < bn} are
two sets of vertices in a graph G, write A ≃∗ B if the map ai 7→ bi is an isomorphism
of induced subgraphs. If the vertices of G are given some linear ordering, denote by
G↾m the induced subgraph of G on its first m vertices. If x ∈ G, let G(x) denote the
induced subgraph of G consisting of the neighbors of x. A set of the form G(x) is
referred to as a “neighbor set”. Let Tn be the set of finite Kn-free simple connected
graphs.

We will need two lemmas. The first is a consequence of the following theorem
of Jon Folkman, which appears as Theorem 2 in [4]. For a graph G, let δ (G) be the
largest n such that G contains a subgraph isomorphic to Kn.
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Theorem 2 (Folkman) For each k > 0 and finite graph F, there is a finite graph
G such that

(a) δ (G) = δ (F), and
(b) for any partition of the vertices of G as G1 ⊔ ·· · ⊔Gk, there is an i such that

Gi contains a subgraph isomorphic to F.

Part (a) implies that G is Kn-free if F is.

Lemma 3 For each n and k, there is a G∈Tn which is not an induced subgraph of⋃k
i=1 Hn(xi) for any vertices x1, . . . ,xk ∈ Hn. In particular, no finite union of neighbor

sets in Hn can contain an isomorphic copy of Hn.

Proof By applying Theorem 2 with F = Kn−1, there is a Kn-free G such that for
every partition of G into k sets, at least one set contains a Kn−1. Since a neighbor
set in Hn cannot contain a Kn−1, this means that G is not contained in any union of k
neighbor sets.

Note that the graph G can be found computably from n and k by a brute-force search.
The next fact is a restatement of Lemma 1 of [3]:

Lemma 4 (El-Zahar & Sauer) Let ∆ be a finite induced subgraph of Hn with d
vertices. Let Γ be any member of Tn with d + 1 vertices put in increasing order
such that ∆ ≃∗ Γ ↾ d. Then there are infinitely many choices of x ∈ Hn such that
∆∪{x} ≃∗ Γ.

Proof of Theorem 1 The proof is by a finite injury priority argument. We build a
computable c : Hn → 2, viewing 2 as the set {R,B} (red and blue), to meet require-
ments

Re : (|We|= ∞∧|c(We)|= 1) =⇒ Lemma 4 fails if Hn is replaced with We ⊂ Hn.
(1)

These are given the priority order R0 > R1 > R2 > · · · . We also define a computable
function p in stages, where p(x,s) is the planned color of vertex x at stage s, be-
ginning with p(x,0) = R (red) for all x. This function will be used to keep track of
vertices which requirements “reserve” to be a certain color. Only one vertex will
actually be colored at each stage, starting with c(0) = R.

A requirement Re is said to be active at stage s if e ≤ s and We,s contains at least
one element that was enumerated after the most recent stage in which Re was in-
jured (to be explained below). If Re was never injured, we say it is active simply if
We,s ̸= /0. Each requirement Re will amass a finite list of vertices {x1

e ,x
2
e , . . . ,x

ℓ
e} in

We as its followers, together with a target graph Γe (also explained below). When a
follower xm

e is added, Re will set the function p(x,s) for some vertices x ∈ Hn(xm
e );

we say Re reserves x when it sets p(x,s). Weaker requirements cannot reserve ver-
tices which are currently reserved by stronger requirements. The followers, target
graph, and reservations of Re are canceled when Re is injured by a stronger require-
ment. (Canceling a reserved vertex just means the vertex is no longer considered to
be reserved by Re, and does not change the values of p or c.) We may as well assume
each We is monochromatic, and will refer to Re as either a red or blue requirement
accordingly.

We now detail the construction, and afterwards show that all requirements are
injured at most finitely often and are met. First, if no Re is active at stage s+ 1 for
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e ≤ s, set p(x,s+ 1) = p(x,s) for all x, set c(s+ 1) = p(s+ 1,s+ 1), and end the
stage. If a requirement Re is already active at stage s+ 1 and has no follower, give
it a follower x1

e which is any element of We,s that was enumerated after the stage in
which Re was last injured, or otherwise any element of We,s if Re was never injured.
Then for every y ∈ Hn(x1

e) which is not currently reserved by a stronger requirement
and has not yet been colored, reserve y by setting p(y,s+1) to be the opposite color
as c(x1

e).
If Re is active and has a follower at stage s+ 1 but no target graph, let its target

graph be some Γe ∈ Tn which cannot be contained in k+ 1 neighbor sets, where k
is the total number of all followers of stronger currently active requirements. Such a
Γe may be furnished by Lemma 3. Order Γe in such a way that each vertex (except
the first) is connected to at least one previous vertex.

Next, suppose that at least one requirement is active and has a follower and tar-
get graph at stage s+ 1. Go through the following procedure for each such Re in
order from strongest to weakest. Let m be the number of followers of Re at stage s;
we will at this point have {x1

e , . . . ,x
m
e } ≃∗ Γe ↾m. Suppose there is some x ∈ We,s+1

with x greater than the stage at which xm
e was enumerated into We, and such that

{x1
e , . . . ,x

m
e ,x} ≃∗ Γe ↾(m+1). If so, then give Re the new follower xm+1

e = x, and for
all y ∈ Hn(xm+1

e ) with y > s+1 such that y is not currently reserved by any stronger
requirement, have Re reserve p(y,s+ 1) = R if Re is blue, or p(y,s+ 1) = B if Re
is red. Injure all weaker requirements by canceling their followers, target graphs,
and reservations. After this is done for all active Re, end the stage by making
p(z,s+1) = p(z,s) for any z for which p(z, ·) was not modified earlier in the stage,
and then letting c(s+1) = p(s+1,s+1). If instead no x as above was found for any
active Re, then set p(x,s+ 1) = p(x,s) for all x, set c(s+ 1) = p(s+ 1,s+ 1), and
end the stage. This completes the construction.

Each requirement only need accumulate a finite list of followers, so in particular
R0 will only injure other requirements finitely many times. After the last time a re-
quirement is injured, it only injures weaker requirements finitely often, so inductively
we have that every requirement is only injured finitely many times before acquiring
its final list of followers and target graph. And each requirement is satisfied: suppose
(without loss of generality) Re is blue. For each i ≥ 2, the vertex xi

e is an element of
Hn(x

j
e) for some j < i, by assumption on how we have ordered Γe. If x j

e was enumer-
ated into We at stage s, then when this x j

e was chosen as a follower, Re reserved every
element of Hn(x

j
e) greater than s by making its planned color red—except for those

vertices which were already reserved (to be blue) by stronger (red) requirements.
Therefore, if xi

e is blue, then since in particular the construction requires xi
e > s, we

must have xi
e a neighbor of some follower of a stronger (red) requirement. (We asked

for xi
e to be greater than the stage t at which xi−1

e was enumerated. Such an xi
e can

be found for any t by Lemma 4.) So this copy we are building of Γe inside We is
contained entirely in a union of neighbor sets of followers of stronger active require-
ments, except possibly for x1

e which may lie outside of any such neighbor set. If
Re is never injured again, then the number k of such followers never changes again;
it is the same as it was when the target graph Γe was chosen not to fit inside k+ 1
neighbor sets. The latter number is large enough to also cover x1

e , so that this copy
of Γe can never be completed inside We, implying Lemma 4 fails in We.
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