
PFA complexity PFA complexity with gap Classification of strings with AP = 2

Probabilistic automatic complexity

Kenneth Gill

2024 ASL Annual Meeting
Iowa State University, Ames, IA

5/16/2024

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Algorithmic complexity of finite strings

“What’s the smallest possible machine you can build to encode a
string x?”

Kolmogorov complexity, K(x): smallest size of a Turing
machine which outputs x (Kolmogorov, Solomonoff ’60s)
Drawbacks: Not computable. Defined up to an additive constant.

Smallest size of a CFG which generates {x} (Diwan ’86)

Finite state complexity: analogue of K(x) using finite
transducers (Calude-Salomaa-Roblot ’11)

DFA complexity, AD(x): least number of states of a DFA
uniquely accepting x among strings of length |x| (Shallit-Wang
’01)

NFA complexity, AN(x): least number of states of an NFA
accepting x and having a unique accepting path of length |x|
(Hyde ’13)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Algorithmic complexity of finite strings

“What’s the smallest possible machine you can build to encode a
string x?”

Kolmogorov complexity, K(x): smallest size of a Turing
machine which outputs x (Kolmogorov, Solomonoff ’60s)

Drawbacks: Not computable. Defined up to an additive constant.

Smallest size of a CFG which generates {x} (Diwan ’86)

Finite state complexity: analogue of K(x) using finite
transducers (Calude-Salomaa-Roblot ’11)

DFA complexity, AD(x): least number of states of a DFA
uniquely accepting x among strings of length |x| (Shallit-Wang
’01)

NFA complexity, AN(x): least number of states of an NFA
accepting x and having a unique accepting path of length |x|
(Hyde ’13)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Algorithmic complexity of finite strings

“What’s the smallest possible machine you can build to encode a
string x?”

Kolmogorov complexity, K(x): smallest size of a Turing
machine which outputs x (Kolmogorov, Solomonoff ’60s)
Drawbacks: Not computable. Defined up to an additive constant.

Smallest size of a CFG which generates {x} (Diwan ’86)

Finite state complexity: analogue of K(x) using finite
transducers (Calude-Salomaa-Roblot ’11)

DFA complexity, AD(x): least number of states of a DFA
uniquely accepting x among strings of length |x| (Shallit-Wang
’01)

NFA complexity, AN(x): least number of states of an NFA
accepting x and having a unique accepting path of length |x|
(Hyde ’13)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Algorithmic complexity of finite strings

“What’s the smallest possible machine you can build to encode a
string x?”

Kolmogorov complexity, K(x): smallest size of a Turing
machine which outputs x (Kolmogorov, Solomonoff ’60s)
Drawbacks: Not computable. Defined up to an additive constant.

Smallest size of a CFG which generates {x} (Diwan ’86)

Finite state complexity: analogue of K(x) using finite
transducers (Calude-Salomaa-Roblot ’11)

DFA complexity, AD(x): least number of states of a DFA
uniquely accepting x among strings of length |x| (Shallit-Wang
’01)

NFA complexity, AN(x): least number of states of an NFA
accepting x and having a unique accepting path of length |x|
(Hyde ’13)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Algorithmic complexity of finite strings

“What’s the smallest possible machine you can build to encode a
string x?”

Kolmogorov complexity, K(x): smallest size of a Turing
machine which outputs x (Kolmogorov, Solomonoff ’60s)
Drawbacks: Not computable. Defined up to an additive constant.

Smallest size of a CFG which generates {x} (Diwan ’86)

Finite state complexity: analogue of K(x) using finite
transducers (Calude-Salomaa-Roblot ’11)

DFA complexity, AD(x): least number of states of a DFA
uniquely accepting x among strings of length |x| (Shallit-Wang
’01)

NFA complexity, AN(x): least number of states of an NFA
accepting x and having a unique accepting path of length |x|
(Hyde ’13)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Algorithmic complexity of finite strings

“What’s the smallest possible machine you can build to encode a
string x?”

Kolmogorov complexity, K(x): smallest size of a Turing
machine which outputs x (Kolmogorov, Solomonoff ’60s)
Drawbacks: Not computable. Defined up to an additive constant.

Smallest size of a CFG which generates {x} (Diwan ’86)

Finite state complexity: analogue of K(x) using finite
transducers (Calude-Salomaa-Roblot ’11)

DFA complexity, AD(x): least number of states of a DFA
uniquely accepting x among strings of length |x| (Shallit-Wang
’01)

NFA complexity, AN(x): least number of states of an NFA
accepting x and having a unique accepting path of length |x|
(Hyde ’13)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Probabilistic finite-state automata (PFAs)

The PFA complexity of x, AP(x), is the least number of states of
a PFA accepting x with unique highest probability among strings
of length |x|. (G. ’22)

A PFA (Rabin ’63) is a generalization of a DFA which

has finitely many states, with an initial prob. dist. π⃗ on states
and a list η⃗ of accepting states;

reads an input word sequentially starting in an initial state;

changes states probabilistically. Formally given by stochastic
matrices Pσ with (Pσ)ij = prob. of moving from state si to state
sj when reading letter σ;

assigns an acceptance probability ρ(x) to each word x, i.e., the
prob. of ending in an accepting state after reading x.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Probabilistic finite-state automata (PFAs)

The PFA complexity of x, AP(x), is the least number of states of
a PFA accepting x with unique highest probability among strings
of length |x|. (G. ’22)

A PFA (Rabin ’63) is a generalization of a DFA which

has finitely many states, with an initial prob. dist. π⃗ on states
and a list η⃗ of accepting states;

reads an input word sequentially starting in an initial state;

changes states probabilistically. Formally given by stochastic
matrices Pσ with (Pσ)ij = prob. of moving from state si to state
sj when reading letter σ;

assigns an acceptance probability ρ(x) to each word x, i.e., the
prob. of ending in an accepting state after reading x.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Probabilistic finite-state automata (PFAs)

The PFA complexity of x, AP(x), is the least number of states of
a PFA accepting x with unique highest probability among strings
of length |x|. (G. ’22)

A PFA (Rabin ’63) is a generalization of a DFA which

has finitely many states, with an initial prob. dist. π⃗ on states
and a list η⃗ of accepting states;

reads an input word sequentially starting in an initial state;

changes states probabilistically. Formally given by stochastic
matrices Pσ with (Pσ)ij = prob. of moving from state si to state
sj when reading letter σ;

assigns an acceptance probability ρ(x) to each word x, i.e., the
prob. of ending in an accepting state after reading x.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Probabilistic finite-state automata (PFAs)

The PFA complexity of x, AP(x), is the least number of states of
a PFA accepting x with unique highest probability among strings
of length |x|. (G. ’22)

A PFA (Rabin ’63) is a generalization of a DFA which

has finitely many states, with an initial prob. dist. π⃗ on states
and a list η⃗ of accepting states;

reads an input word sequentially starting in an initial state;

changes states probabilistically. Formally given by stochastic
matrices Pσ with (Pσ)ij = prob. of moving from state si to state
sj when reading letter σ;

assigns an acceptance probability ρ(x) to each word x, i.e., the
prob. of ending in an accepting state after reading x.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

PFA complexity

The gap function of the PFA M is

gapM(x) = min{ ρM(x)− ρM(y) : |y| = |x| and y ̸= x }.

The PFA complexity of x is the least number AP(x) of states of
an M with gapM(x) > 0.

Example: the NFA complexity of x = 06180 is 8, but AP(x) = 2 via

s1 s2
λ|1

1|.75

0|1 & 1|.25

0|.25 & 1|.75

0|.75 & 1|.25

For this PFA, ρ(x) ≈ 0.625 with gap(x) ≈ 4× 10−6 (!).

PFA complexity PFA complexity with gap Classification of strings with AP = 2

PFA complexity

The gap function of the PFA M is

gapM(x) = min{ ρM(x)− ρM(y) : |y| = |x| and y ̸= x }.

The PFA complexity of x is the least number AP(x) of states of
an M with gapM(x) > 0.

Example: the NFA complexity of x = 06180 is 8, but AP(x) = 2 via

s1 s2
λ|1

1|.75

0|1 & 1|.25

0|.25 & 1|.75

0|.75 & 1|.25

For this PFA, ρ(x) ≈ 0.625 with gap(x) ≈ 4× 10−6 (!).

PFA complexity PFA complexity with gap Classification of strings with AP = 2

PFA complexity

The gap function of the PFA M is

gapM(x) = min{ ρM(x)− ρM(y) : |y| = |x| and y ̸= x }.

The PFA complexity of x is the least number AP(x) of states of
an M with gapM(x) > 0.

Example: the NFA complexity of x = 06180 is 8, but AP(x) = 2 via

s1 s2
λ|1

1|.75

0|1 & 1|.25

0|.25 & 1|.75

0|.75 & 1|.25

For this PFA, ρ(x) ≈ 0.625 with gap(x) ≈ 4× 10−6 (!).

PFA complexity PFA complexity with gap Classification of strings with AP = 2

PFA complexity with required gap

The PFA complexity with gap δ is the least number AP,δ(x) of
states of a PFA having gap(x) > δ, where δ ∈ [0, 1) is a
real-valued parameter. (G. ’22)

AP(x) = AP,0(x) ≤ AP,δ(x) ≤ AD(x) for all x, δ,

where AD = DFA complexity. Note AP,δ(x) is increasing in δ.

AP(x) ≤ AN(x) + 1 for all x,

where AN = NFA complexity.
Not a tight bound! Only met by constant strings so far.
In fact AP(x) ≤ 3 ∀ |x| ≤ 9.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

PFA complexity with required gap

The PFA complexity with gap δ is the least number AP,δ(x) of
states of a PFA having gap(x) > δ, where δ ∈ [0, 1) is a
real-valued parameter. (G. ’22)

AP(x) = AP,0(x) ≤ AP,δ(x) ≤ AD(x) for all x, δ,

where AD = DFA complexity. Note AP,δ(x) is increasing in δ.

AP(x) ≤ AN(x) + 1 for all x,

where AN = NFA complexity.
Not a tight bound! Only met by constant strings so far.
In fact AP(x) ≤ 3 ∀ |x| ≤ 9.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

PFA complexity with required gap

The PFA complexity with gap δ is the least number AP,δ(x) of
states of a PFA having gap(x) > δ, where δ ∈ [0, 1) is a
real-valued parameter. (G. ’22)

AP(x) = AP,0(x) ≤ AP,δ(x) ≤ AD(x) for all x, δ,

where AD = DFA complexity. Note AP,δ(x) is increasing in δ.

AP(x) ≤ AN(x) + 1 for all x,

where AN = NFA complexity.

Not a tight bound! Only met by constant strings so far.
In fact AP(x) ≤ 3 ∀ |x| ≤ 9.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

PFA complexity with required gap

The PFA complexity with gap δ is the least number AP,δ(x) of
states of a PFA having gap(x) > δ, where δ ∈ [0, 1) is a
real-valued parameter. (G. ’22)

AP(x) = AP,0(x) ≤ AP,δ(x) ≤ AD(x) for all x, δ,

where AD = DFA complexity. Note AP,δ(x) is increasing in δ.

AP(x) ≤ AN(x) + 1 for all x,

where AN = NFA complexity.
Not a tight bound! Only met by constant strings so far.
In fact AP(x) ≤ 3 ∀ |x| ≤ 9.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

AP,δ is computable

AP is not known to be computable—yet—but AP,δ is (“almost
everywhere”):

Theorem (G. ’23)

For any finite alphabet Σ, the function (δ, x) 7→ AP,δ(x) is
computable on [0, 1)× Σ∗ except at:

A countable c.e. set of discontinuities;

Possibly δ = 0 (it’s at least continuous there).

In particular, for every x, AP,δ(x) is computable for all but at most
AD(x)− 2 many values of δ.

Proof via computable analysis. (Thanks to Jake Canel for
suggesting the approach.)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

AP,δ is computable

AP is not known to be computable—yet—but AP,δ is (“almost
everywhere”):

Theorem (G. ’23)

For any finite alphabet Σ, the function (δ, x) 7→ AP,δ(x) is
computable on [0, 1)× Σ∗ except at:

A countable c.e. set of discontinuities;

Possibly δ = 0 (it’s at least continuous there).

In particular, for every x, AP,δ(x) is computable for all but at most
AD(x)− 2 many values of δ.

Proof via computable analysis. (Thanks to Jake Canel for
suggesting the approach.)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

AP,δ is computable

AP is not known to be computable—yet—but AP,δ is (“almost
everywhere”):

Theorem (G. ’23)

For any finite alphabet Σ, the function (δ, x) 7→ AP,δ(x) is
computable on [0, 1)× Σ∗ except at:

A countable c.e. set of discontinuities;

Possibly δ = 0 (it’s at least continuous there).

In particular, for every x, AP,δ(x) is computable for all but at most
AD(x)− 2 many values of δ.

Proof via computable analysis. (Thanks to Jake Canel for
suggesting the approach.)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

AP,δ is computable

AP is not known to be computable—yet—but AP,δ is (“almost
everywhere”):

Theorem (G. ’23)

For any finite alphabet Σ, the function (δ, x) 7→ AP,δ(x) is
computable on [0, 1)× Σ∗ except at:

A countable c.e. set of discontinuities;

Possibly δ = 0 (it’s at least continuous there).

In particular, for every x, AP,δ(x) is computable for all but at most
AD(x)− 2 many values of δ.

Proof via computable analysis. (Thanks to Jake Canel for
suggesting the approach.)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Classification of binary strings with AP = 2

Theorem (G. ’23)

For a binary string w, AP(w) = 2 ⇐⇒ w is of the form

0n1m, 0n1m0, 0n(10)m, or 0n1(01)m

for some n,m ≥ 0, or is the bit-flip of one of the above.

To compare, AN(w) = 2 iff w = (01)m, 0m1, or 01m (Hyde).

Since AN(0n1n) is unbounded, we can save arbitrarily many states
by switching to a PFA from an NFA. (At the cost of a more complex automaton...)

The proof of this theorem shows that a generic 2-state PFA
describes an infinite family of strings of similar structure.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Classification of binary strings with AP = 2

Theorem (G. ’23)

For a binary string w, AP(w) = 2 ⇐⇒ w is of the form

0n1m, 0n1m0, 0n(10)m, or 0n1(01)m

for some n,m ≥ 0, or is the bit-flip of one of the above.

To compare, AN(w) = 2 iff w = (01)m, 0m1, or 01m (Hyde).

Since AN(0n1n) is unbounded, we can save arbitrarily many states
by switching to a PFA from an NFA. (At the cost of a more complex automaton...)

The proof of this theorem shows that a generic 2-state PFA
describes an infinite family of strings of similar structure.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Classification of binary strings with AP = 2

Theorem (G. ’23)

For a binary string w, AP(w) = 2 ⇐⇒ w is of the form

0n1m, 0n1m0, 0n(10)m, or 0n1(01)m

for some n,m ≥ 0, or is the bit-flip of one of the above.

To compare, AN(w) = 2 iff w = (01)m, 0m1, or 01m (Hyde).

Since AN(0n1n) is unbounded, we can save arbitrarily many states
by switching to a PFA from an NFA. (At the cost of a more complex automaton...)

The proof of this theorem shows that a generic 2-state PFA
describes an infinite family of strings of similar structure.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Classification of binary strings with AP = 2

Theorem (G. ’23)

For a binary string w, AP(w) = 2 ⇐⇒ w is of the form

0n1m, 0n1m0, 0n(10)m, or 0n1(01)m

for some n,m ≥ 0, or is the bit-flip of one of the above.

To compare, AN(w) = 2 iff w = (01)m, 0m1, or 01m (Hyde).

Since AN(0n1n) is unbounded, we can save arbitrarily many states
by switching to a PFA from an NFA. (At the cost of a more complex automaton...)

The proof of this theorem shows that a generic 2-state PFA
describes an infinite family of strings of similar structure.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

The IFS correspondence

Both directions of the proof rely heavily on a correspondence
between PFAs and iterated function systems (IFSs).

Let any 2-state binary PFA be given. Then there are maps

f0(x) = a+ bx and f1(x) = c+ dx

on [0, 1] and a number x0 such that for any w,

ρ(w) = fw(n) ◦ fw(n−1) ◦ · · · ◦ fw(0)(x0).

The reverse correspondence is also true. (This generalizes!)

Idea of forward direction: For each n, find the sequence of n
compositions of f0 and f1 attaining the highest possible value.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

The IFS correspondence

Both directions of the proof rely heavily on a correspondence
between PFAs and iterated function systems (IFSs).

Let any 2-state binary PFA be given. Then there are maps

f0(x) = a+ bx and f1(x) = c+ dx

on [0, 1] and a number x0 such that for any w,

ρ(w) = fw(n) ◦ fw(n−1) ◦ · · · ◦ fw(0)(x0).

The reverse correspondence is also true. (This generalizes!)

Idea of forward direction: For each n, find the sequence of n
compositions of f0 and f1 attaining the highest possible value.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

The IFS correspondence

Both directions of the proof rely heavily on a correspondence
between PFAs and iterated function systems (IFSs).

Let any 2-state binary PFA be given. Then there are maps

f0(x) = a+ bx and f1(x) = c+ dx

on [0, 1] and a number x0 such that for any w,

ρ(w) = fw(n) ◦ fw(n−1) ◦ · · · ◦ fw(0)(x0).

The reverse correspondence is also true. (This generalizes!)

Idea of forward direction: For each n, find the sequence of n
compositions of f0 and f1 attaining the highest possible value.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Illustration of forward direction: Positive slopes

r0 r1 ix

f0

f1

x0

A max prob is always the image of either a max prob (under a
map of pos. slope) or a min prob (neg. slope).

Here, iterating f0 gives maxes until x < ix , then f1 is max.
Witness 0n1m ∀m.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Illustration of forward direction: Positive slopes

r0 r1 ix

f0

f1

0 max

A max prob is always the image of either a max prob (under a
map of pos. slope) or a min prob (neg. slope).

Here, iterating f0 gives maxes until x < ix , then f1 is max.
Witness 0n1m ∀m.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Illustration of forward direction: Positive slopes

r0 r1 ix

f0

f1

00 max

A max prob is always the image of either a max prob (under a
map of pos. slope) or a min prob (neg. slope).

Here, iterating f0 gives maxes until x < ix , then f1 is max.
Witness 0n1m ∀m.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Illustration of forward direction: Positive slopes

r0 r1 ix

f0

f1

000 max

A max prob is always the image of either a max prob (under a
map of pos. slope) or a min prob (neg. slope).

Here, iterating f0 gives maxes until x < ix , then f1 is max.
Witness 0n1m ∀m.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Illustration of forward direction: Positive slopes

r0 r1 ix

f0

f1

0001 max

A max prob is always the image of either a max prob (under a
map of pos. slope) or a min prob (neg. slope).
Here, iterating f0 gives maxes until x < ix , then f1 is max.
Witness 0n1m ∀m.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Illustration of forward direction: Positive slopes

r0 r1 ix

f0

f1

00011 max

A max prob is always the image of either a max prob (under a
map of pos. slope) or a min prob (neg. slope).
Here, iterating f0 gives maxes until x < ix , then f1 is max.
Witness 0n1m ∀m.

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

x0

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

0 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

00 min

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

0000 min

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

00001 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010 min

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

0000101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

00001010 min

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

1 min

→ 11 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

1 min → 11 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

10 min

→ 101 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

10 min → 101 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13 min

→ 14 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13 min → 14 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

130 min

→ 1301 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

130 min → 1301 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

1300 min

→ 13001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

1300 min → 13001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13000 min

→ 130001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13000 min → 130001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13000 min → 130001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)

PFA complexity PFA complexity with gap Classification of strings with AP = 2

Further directions

AP computable? (likely yes: details pending)

AP unbounded? If so, tight asymptotic bound? Same questions
for AP,δ .

Use the max-gap function γk(w) as a computable parametrized
complexity measure instead?

PFA complexity PFA complexity with gap Classification of strings with AP = 2

References

K. Gill, Probabilistic automatic complexity of finite strings,
submitted (2024).

K. Gill, Two studies in complexity, Ph.D. dissertation, Penn State
University, 2023.

K. Hyde, Nondeterministic finite state complexity, MA thesis,
University of Hawai’i, Manoa, 2013.

J. Shallit and M.-w. Wang, Automatic complexity of strings, J.
Autom. Lang. Comb. 6(4) (2001), 537–554.

This research was supported in part by NSF grant DMS-1854107.

	PFA complexity
	PFA complexity with gap
	Classification of strings with AP=2

