Classification of strings with $A_P = 2$

Probabilistic automatic complexity

Kenneth Gill

2024 ASL Annual Meeting Iowa State University, Ames, IA

5/16/2024

"What's the smallest possible machine you can build to encode a string x?"

• **Kolmogorov complexity**, *K*(*x*): smallest size of a Turing machine which outputs *x* (Kolmogorov, Solomonoff '60s)

"What's the smallest possible machine you can build to encode a string x?"

 Kolmogorov complexity, K(x): smallest size of a Turing machine which outputs x (Kolmogorov, Solomonoff '60s)
Drawbacks: Not computable. Defined up to an additive constant.

- Kolmogorov complexity, K(x): smallest size of a Turing machine which outputs x (Kolmogorov, Solomonoff '60s)
 Drawbacks: Not computable. Defined up to an additive constant.
- Smallest size of a CFG which generates $\{x\}$ (Diwan '86)
- **Finite state complexity**: analogue of *K*(*x*) using finite transducers (Calude-Salomaa-Roblot '11)

- Kolmogorov complexity, K(x): smallest size of a Turing machine which outputs x (Kolmogorov, Solomonoff '60s)
 Drawbacks: Not computable. Defined up to an additive constant.
- Smallest size of a CFG which generates $\{x\}$ (Diwan '86)
- **Finite state complexity**: analogue of *K*(*x*) using finite transducers (Calude-Salomaa-Roblot '11)
- DFA complexity, A_D(x): least number of states of a DFA uniquely accepting x among strings of length |x| (Shallit-Wang '01)

- Kolmogorov complexity, K(x): smallest size of a Turing machine which outputs x (Kolmogorov, Solomonoff '60s)
 Drawbacks: Not computable. Defined up to an additive constant.
- Smallest size of a CFG which generates $\{x\}$ (Diwan '86)
- **Finite state complexity**: analogue of *K*(*x*) using finite transducers (Calude-Salomaa-Roblot '11)
- DFA complexity, A_D(x): least number of states of a DFA uniquely accepting x among strings of length |x| (Shallit-Wang '01)
- NFA complexity, A_N(x): least number of states of an NFA accepting x and having a unique accepting path of length |x| (Hyde '13)

The **PFA complexity** of *x*, $A_P(x)$, is the least number of states of a PFA accepting *x* with unique highest probability among strings of length |x|. (G. '22)

The **PFA complexity** of *x*, $A_P(x)$, is the least number of states of a PFA accepting *x* with unique highest probability among strings of length |x|. (G. '22)

A **PFA** (Rabin '63) is a generalization of a DFA which

- has finitely many states, with an initial prob. dist. $\vec{\pi}$ on states and a list $\vec{\eta}$ of accepting states;
- reads an input word sequentially starting in an initial state;

The **PFA complexity** of *x*, $A_P(x)$, is the least number of states of a PFA accepting *x* with unique highest probability among strings of length |x|. (G. '22)

A **PFA** (Rabin '63) is a generalization of a DFA which

- has finitely many states, with an initial prob. dist. $\vec{\pi}$ on states and a list $\vec{\eta}$ of accepting states;
- reads an input word sequentially starting in an initial state;
- changes states probabilistically. Formally given by stochastic matrices P_σ with (P_σ)_{ij} = prob. of moving from state s_i to state s_i when reading letter σ;

The **PFA complexity** of *x*, $A_P(x)$, is the least number of states of a PFA accepting *x* with unique highest probability among strings of length |x|. (G. '22)

A **PFA** (Rabin '63) is a generalization of a DFA which

- has finitely many states, with an initial prob. dist. $\vec{\pi}$ on states and a list $\vec{\eta}$ of accepting states;
- reads an input word sequentially starting in an initial state;
- changes states probabilistically. Formally given by stochastic matrices P_σ with (P_σ)_{ij} = prob. of moving from state s_i to state s_j when reading letter σ;
- assigns an acceptance probability ρ(x) to each word x, i.e., the prob. of ending in an accepting state after reading x.

PFA complexity

The gap function of the PFA M is

$$\operatorname{gap}_{M}(x) = \min\{ \rho_{M}(x) - \rho_{M}(y) : |y| = |x| \text{ and } y \neq x \}.$$

The **PFA complexity** of *x* is the least number $A_P(x)$ of states of an *M* with $gap_M(x) > 0$.

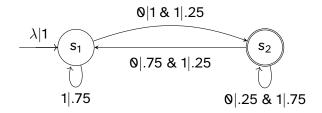
PFA complexity

The gap function of the PFA M is

$$\operatorname{gap}_{M}(x) = \min\{ \rho_{M}(x) - \rho_{M}(y) : |y| = |x| \text{ and } y \neq x \}.$$

The **PFA complexity** of *x* is the least number $A_P(x)$ of states of an *M* with gap_{*M*}(*x*) > 0.

Example: the NFA complexity of $x = 0^{6}1^{8}0$ is 8, but $A_{P}(x) = 2$ via



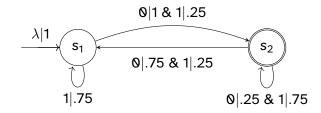
PFA complexity

The gap function of the PFA M is

$$\operatorname{gap}_{M}(x) = \min\{ \rho_{M}(x) - \rho_{M}(y) : |y| = |x| \text{ and } y \neq x \}.$$

The **PFA complexity** of *x* is the least number $A_P(x)$ of states of an *M* with gap_{*M*}(*x*) > 0.

Example: the NFA complexity of $x = 0^{6}1^{8}0$ is 8, but $A_{P}(x) = 2$ via



For this PFA, $\rho(x) \approx 0.625$ with gap $(x) \approx 4 \times 10^{-6}$ (!).

The **PFA complexity with gap** δ is the least number $A_{P,\delta}(x)$ of states of a PFA having gap $(x) > \delta$, where $\delta \in [0, 1)$ is a real-valued parameter. (G. '22)

The **PFA complexity with gap** δ is the least number $A_{P,\delta}(x)$ of states of a PFA having gap $(x) > \delta$, where $\delta \in [0, 1)$ is a real-valued parameter. (G. '22)

 $A_{P}(x) = A_{P,\emptyset}(x) \le A_{P,\delta}(x) \le A_{D}(x) \quad \text{for all } x, \delta,$ where $A_{D} = \text{DFA}$ complexity. Note $A_{P,\delta}(x)$ is increasing in δ .

The **PFA complexity with gap** δ is the least number $A_{P,\delta}(x)$ of states of a PFA having gap $(x) > \delta$, where $\delta \in [0, 1)$ is a real-valued parameter. (G. '22)

$$A_P(x) = A_{P,0}(x) \le A_{P,\delta}(x) \le A_D(x)$$
 for all x, δ ,
where $A_D = DFA$ complexity. Note $A_{P,\delta}(x)$ is increasing in δ .

$$A_P(x) \leq A_N(x) + 1$$
 for all x ,

where $A_N = NFA$ complexity.

The **PFA complexity with gap** δ is the least number $A_{P,\delta}(x)$ of states of a PFA having gap $(x) > \delta$, where $\delta \in [0, 1)$ is a real-valued parameter. (G. '22)

$$A_P(x) = A_{P,0}(x) \le A_{P,\delta}(x) \le A_D(x)$$
 for all x, δ ,

where $A_D = DFA$ complexity. Note $A_{P,\delta}(x)$ is increasing in δ .

$$A_P(x) \leq A_N(x) + 1$$
 for all x ,

where $A_N = NFA$ complexity.

Not a tight bound! Only met by constant strings so far. In fact $A_P(x) \le 3 \ \forall |x| \le 9$.

 A_P is not known to be computable—yet—but $A_{P,\delta}$ is ("almost everywhere"):

Theorem (G. '23)

For any finite alphabet Σ , the function $(\delta, x) \mapsto A_{P,\delta}(x)$ is computable on $[0, 1) \times \Sigma^*$ except at:

 A_P is not known to be computable—yet—but $A_{P,\delta}$ is ("almost everywhere"):

Theorem (G. '23)

For any finite alphabet Σ , the function $(\delta, x) \mapsto A_{P,\delta}(x)$ is computable on $[0, 1) \times \Sigma^*$ except at:

- A countable c.e. set of discontinuities;
- Possibly $\delta = 0$ (it's at least continuous there).

 A_P is not known to be computable—yet—but $A_{P,\delta}$ is ("almost everywhere"):

Theorem (G. '23)

For any finite alphabet Σ , the function $(\delta, x) \mapsto A_{P,\delta}(x)$ is computable on $[0, 1) \times \Sigma^*$ except at:

- A countable c.e. set of discontinuities;
- Possibly $\delta = 0$ (it's at least continuous there).

In particular, for every x, $A_{P,\delta}(x)$ is computable for all but at most $A_D(x) - 2$ many values of δ .

 A_P is not known to be computable—yet—but $A_{P,\delta}$ is ("almost everywhere"):

Theorem (G. '23)

For any finite alphabet Σ , the function $(\delta, x) \mapsto A_{P,\delta}(x)$ is computable on $[0, 1) \times \Sigma^*$ except at:

- A countable c.e. set of discontinuities;
- Possibly $\delta = 0$ (it's at least continuous there).

In particular, for every x, $A_{P,\delta}(x)$ is computable for all but at most $A_D(x) - 2$ many values of δ .

Proof via computable analysis. (Thanks to Jake Canel for suggesting the approach.)

Theorem (G. '23)

For a binary string w, $A_P(w) = 2 \iff w$ is of the form

 $O^n 1^m$, $O^n 1^m O$, $O^n (1O)^m$, or $O^n 1 (O1)^m$

for some $n, m \ge 0$, or is the bit-flip of one of the above.

Theorem (G. '23)

For a binary string w, $A_P(w) = 2 \iff w$ is of the form

 $O^n 1^m$, $O^n 1^m O$, $O^n (1O)^m$, or $O^n 1 (O1)^m$

for some $n, m \ge 0$, or is the bit-flip of one of the above.

To compare, $A_N(w) = 2$ iff $w = (01)^m$, 0^m 1, or 01^m (Hyde).

Theorem (G. '23)

For a binary string w, $A_P(w) = 2 \iff w$ is of the form

 $0^n 1^m$, $0^n 1^m 0$, $0^n (10)^m$, or $0^n 1(01)^m$

for some $n, m \ge 0$, or is the bit-flip of one of the above.

To compare, $A_N(w) = 2$ iff $w = (01)^m$, 0^m 1, or 01^m (Hyde).

Since $A_N(\mathbb{Q}^n \mathbb{1}^n)$ is unbounded, we can save arbitrarily many states by switching to a PFA from an NFA. (At the cost of a more complex automaton...)

Theorem (G. '23)

For a binary string w, $A_P(w) = 2 \iff w$ is of the form

 $O^n 1^m$, $O^n 1^m O$, $O^n (1O)^m$, or $O^n 1 (O1)^m$

for some $n, m \ge 0$, or is the bit-flip of one of the above.

To compare, $A_N(w) = 2$ iff $w = (01)^m$, 0^m 1, or 01^m (Hyde).

Since $A_N(\mathbb{Q}^n \mathbb{1}^n)$ is unbounded, we can save arbitrarily many states by switching to a PFA from an NFA. (At the cost of a more complex automaton...)

The proof of this theorem shows that a generic 2-state PFA describes an infinite family of strings of similar structure.

Classification of strings with $A_P = 2$ $0 \bullet 000$

The IFS correspondence

Both directions of the proof rely heavily on a correspondence between PFAs and iterated function systems (IFSs).

The IFS correspondence

Both directions of the proof rely heavily on a correspondence between PFAs and iterated function systems (IFSs).

Let any 2-state binary PFA be given. Then there are maps

$$f_{0}(x) = a + bx$$
 and $f_{1}(x) = c + dx$

on [0, 1] and a number x_0 such that for any w,

$$\rho(w) = f_{w(n)} \circ f_{w(n-1)} \circ \cdots \circ f_{w(0)}(x_0).$$

The reverse correspondence is also true. (This generalizes!)

The IFS correspondence

Both directions of the proof rely heavily on a correspondence between PFAs and iterated function systems (IFSs).

Let any 2-state binary PFA be given. Then there are maps

$$f_{0}(x) = a + bx$$
 and $f_{1}(x) = c + dx$

on [0, 1] and a number x_0 such that for any w,

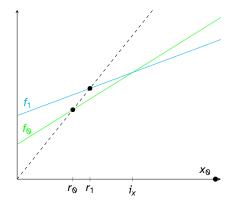
$$\rho(w) = f_{w(n)} \circ f_{w(n-1)} \circ \cdots \circ f_{w(0)}(x_0).$$

The reverse correspondence is also true. (This generalizes!)

Idea of forward direction: For each *n*, find the sequence of *n* compositions of f_0 and f_1 attaining the highest possible value.

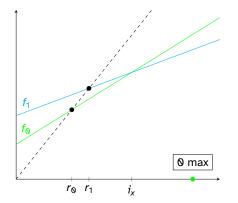
Classification of strings with $A_P = 2$

Illustration of forward direction: Positive slopes



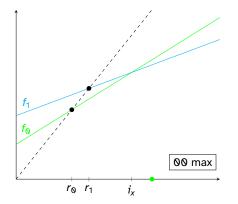
Classification of strings with $A_P = 2$

Illustration of forward direction: Positive slopes



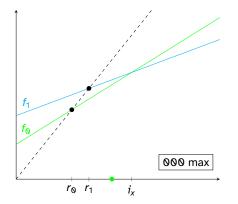
Classification of strings with $A_P = 2$

Illustration of forward direction: Positive slopes



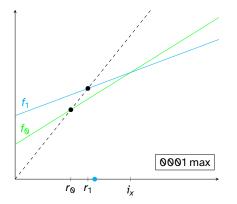
Classification of strings with $A_P = 2$

Illustration of forward direction: Positive slopes



Classification of strings with $A_P = 2$

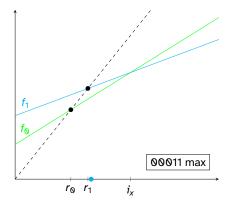
Illustration of forward direction: Positive slopes



- A max prob is always the image of either a max prob (under a map of pos. slope) or a min prob (neg. slope).
- Here, iterating f_0 gives maxes until $x < i_x$, then f_1 is max. Witness $0^n 1^m \forall m$.

Classification of strings with $A_P = 2$

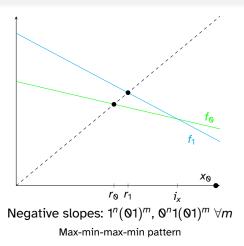
Illustration of forward direction: Positive slopes



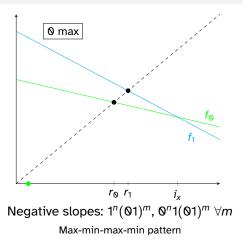
- A max prob is always the image of either a max prob (under a map of pos. slope) or a min prob (neg. slope).
- Here, iterating f_0 gives maxes until $x < i_x$, then f_1 is max. Witness $0^n 1^m \forall m$.

Classification of strings with $A_P = 2$

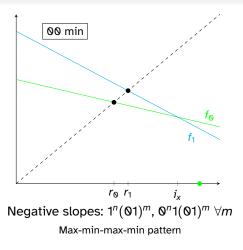
Other subcases of the forward direction



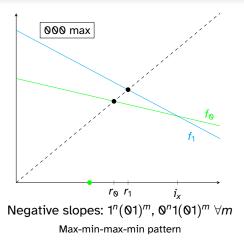
Classification of strings with $A_P = 2$



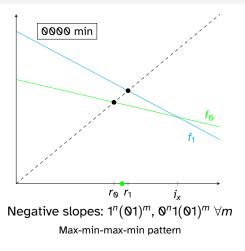
Classification of strings with $A_P = 2$



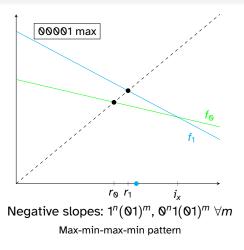
Classification of strings with $A_P = 2$



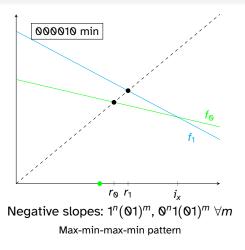
Classification of strings with $A_P = 2$



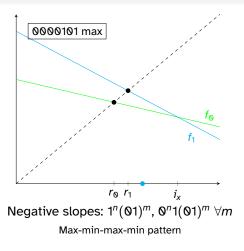
Classification of strings with $A_P = 2$



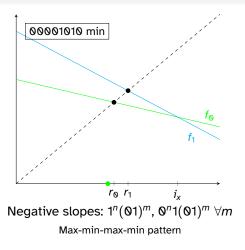
Classification of strings with $A_P = 2$



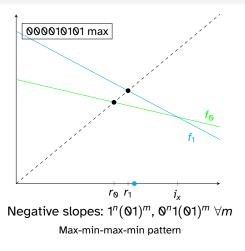
Classification of strings with $A_P = 2$



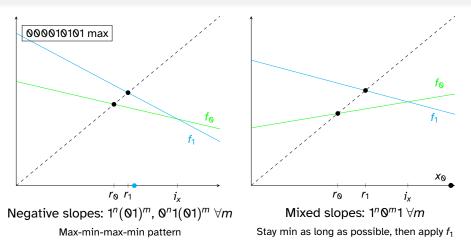
Classification of strings with $A_P = 2$



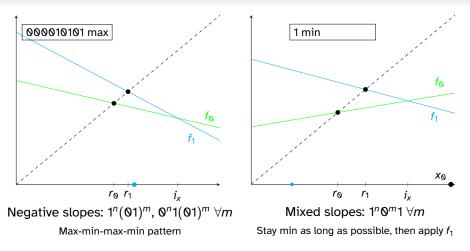
Classification of strings with $A_P = 2$



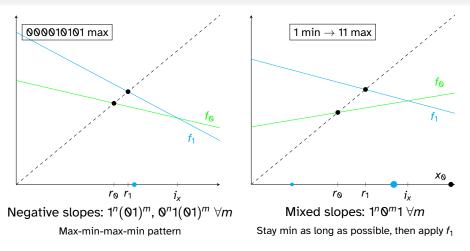
Classification of strings with $A_P = 2$



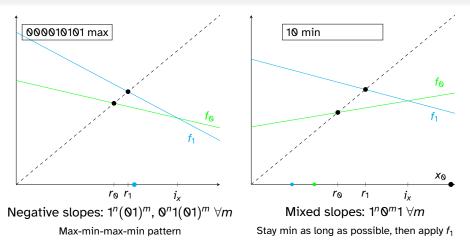
Classification of strings with $A_P = 2$



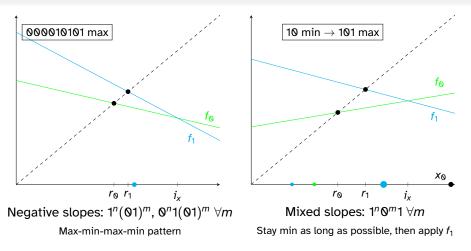
Classification of strings with $A_P = 2$



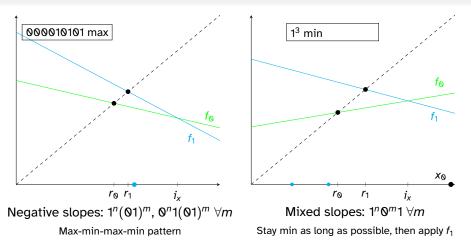
Classification of strings with $A_P = 2$



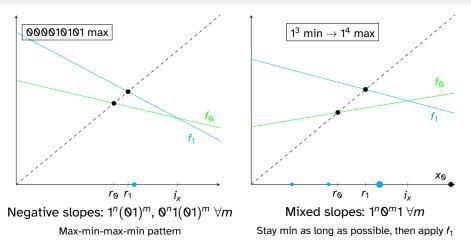
Classification of strings with $A_P = 2$



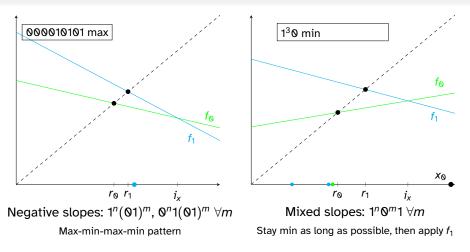
Classification of strings with $A_P = 2$



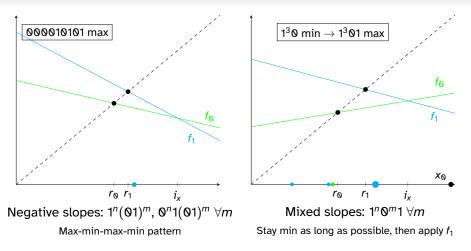
Classification of strings with $A_P = 2$



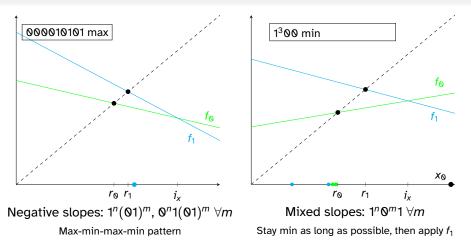
Classification of strings with $A_P = 2$



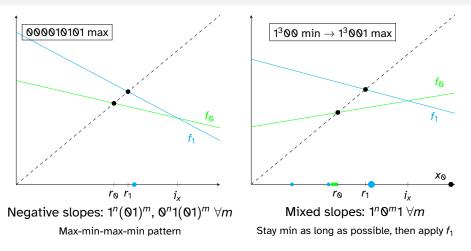
Classification of strings with $A_P = 2$



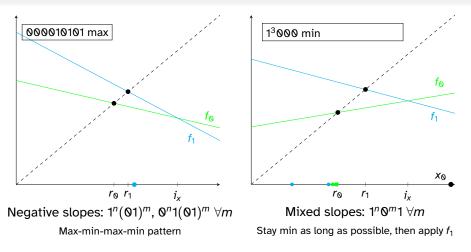
Classification of strings with $A_P = 2$



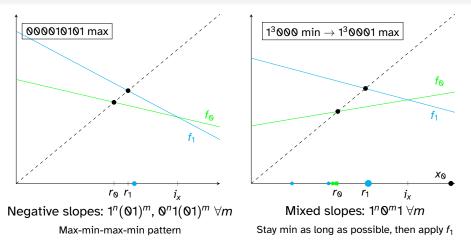
Classification of strings with $A_P = 2$



Classification of strings with $A_P = 2$

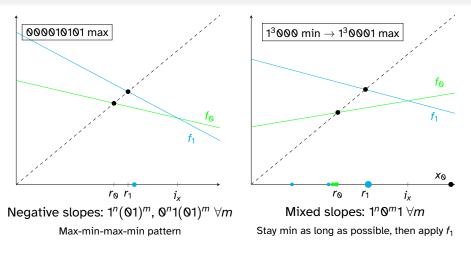


Classification of strings with $A_P = 2$



Classification of strings with $A_P = 2$

Other subcases of the forward direction



(Proof: really long!)

Further directions

- A_P computable? (likely yes: details pending)
- A_P unbounded? If so, tight asymptotic bound? Same questions for $A_{P,\delta}$.
- Use the max-gap function γ^k(w) as a computable parametrized complexity measure instead?

References

- K. Gill, Probabilistic automatic complexity of finite strings, submitted (2024).
- K. Gill, *Two studies in complexity*, Ph.D. dissertation, Penn State University, 2023.
- K. Hyde, *Nondeterministic finite state complexity*, MA thesis, University of Hawai'i, Manoa, 2013.
- J. Shallit and M.-w. Wang, Automatic complexity of strings, J. Autom. Lang. Comb. **6**(4) (2001), 537–554.

This research was supported in part by NSF grant DMS-1854107.