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PFA complexity PFA complexity with gap Classification of strings with AP = 2

Algorithmic complexity of finite strings

“What’s the smallest possible machine you can build to encode a
string x?”

Kolmogorov complexity, K(x): smallest size of a Turing
machine which outputs x (Kolmogorov, Solomonoff ’60s)
Drawbacks: Not computable. Defined up to an additive constant.

Smallest size of a CFG which generates {x} (Diwan ’86)

Finite state complexity: analogue of K(x) using finite
transducers (Calude-Salomaa-Roblot ’11)

DFA complexity, AD(x): least number of states of a DFA
uniquely accepting x among strings of length |x| (Shallit-Wang
’01)

NFA complexity, AN(x): least number of states of an NFA
accepting x and having a unique accepting path of length |x|
(Hyde ’13)
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Probabilistic finite-state automata (PFAs)

The PFA complexity of x, AP(x), is the least number of states of
a PFA accepting x with unique highest probability among strings
of length |x|. (G. ’22)

A PFA (Rabin ’63) is a generalization of a DFA which

has finitely many states, with an initial prob. dist. π⃗ on states
and a list η⃗ of accepting states;

reads an input word sequentially starting in an initial state;

changes states probabilistically. Formally given by stochastic
matrices Pσ with (Pσ)ij = prob. of moving from state si to state
sj when reading letter σ;

assigns an acceptance probability ρ(x) to each word x, i.e., the
prob. of ending in an accepting state after reading x.
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PFA complexity

The gap function of the PFA M is

gapM(x) = min{ ρM(x)− ρM(y) : |y| = |x| and y ̸= x }.

The PFA complexity of x is the least number AP(x) of states of
an M with gapM(x) > 0.

Example: the NFA complexity of x = 06180 is 8, but AP(x) = 2 via

s1 s2
λ|1

1|.75

0|1 & 1|.25

0|.25 & 1|.75

0|.75 & 1|.25

For this PFA, ρ(x) ≈ 0.625 with gap(x) ≈ 4× 10−6 (!).
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PFA complexity with required gap

The PFA complexity with gap δ is the least number AP,δ(x) of
states of a PFA having gap(x) > δ, where δ ∈ [0, 1) is a
real-valued parameter. (G. ’22)

AP(x) = AP,0(x) ≤ AP,δ(x) ≤ AD(x) for all x, δ,

where AD = DFA complexity. Note AP,δ(x) is increasing in δ.

AP(x) ≤ AN(x) + 1 for all x,

where AN = NFA complexity.
Not a tight bound! Only met by constant strings so far.
In fact AP(x) ≤ 3 ∀ |x| ≤ 9.
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AP,δ is computable

AP is not known to be computable—yet—but AP,δ is (“almost
everywhere”):

Theorem (G. ’23)

For any finite alphabet Σ, the function (δ, x) 7→ AP,δ(x) is
computable on [0, 1)× Σ∗ except at:

A countable c.e. set of discontinuities;

Possibly δ = 0 (it’s at least continuous there).

In particular, for every x, AP,δ(x) is computable for all but at most
AD(x)− 2 many values of δ.

Proof via computable analysis. (Thanks to Jake Canel for
suggesting the approach.)
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Classification of binary strings with AP = 2

Theorem (G. ’23)

For a binary string w, AP(w) = 2 ⇐⇒ w is of the form

0n1m, 0n1m0, 0n(10)m, or 0n1(01)m

for some n,m ≥ 0, or is the bit-flip of one of the above.

To compare, AN(w) = 2 iff w = (01)m, 0m1, or 01m (Hyde).

Since AN(0n1n) is unbounded, we can save arbitrarily many states
by switching to a PFA from an NFA. (At the cost of a more complex automaton...)

The proof of this theorem shows that a generic 2-state PFA
describes an infinite family of strings of similar structure.
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The IFS correspondence

Both directions of the proof rely heavily on a correspondence
between PFAs and iterated function systems (IFSs).

Let any 2-state binary PFA be given. Then there are maps

f0(x) = a+ bx and f1(x) = c+ dx

on [0, 1] and a number x0 such that for any w,

ρ(w) = fw(n) ◦ fw(n−1) ◦ · · · ◦ fw(0)(x0).

The reverse correspondence is also true. (This generalizes!)

Idea of forward direction: For each n, find the sequence of n
compositions of f0 and f1 attaining the highest possible value.
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Illustration of forward direction: Positive slopes

r0 r1 ix

f0

f1

x0

A max prob is always the image of either a max prob (under a
map of pos. slope) or a min prob (neg. slope).

Here, iterating f0 gives maxes until x < ix , then f1 is max.
Witness 0n1m ∀m.
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Illustration of forward direction: Positive slopes

r0 r1 ix

f0

f1

00011 max

A max prob is always the image of either a max prob (under a
map of pos. slope) or a min prob (neg. slope).
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Other subcases of the forward direction

r0 r1 ix

f0

f1

x0

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

1 min → 11 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

10 min

→ 101 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

10 min → 101 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13 min

→ 14 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13 min → 14 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)



PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

130 min

→ 1301 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)



PFA complexity PFA complexity with gap Classification of strings with AP = 2

Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

130 min → 1301 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

1300 min

→ 13001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

1300 min → 13001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13000 min

→ 130001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13000 min → 130001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Other subcases of the forward direction

r0 r1 ix

f0

f1

000010101 max

Negative slopes: 1n(01)m, 0n1(01)m ∀m
Max-min-max-min pattern

r0 r1 ix

f0

f1

x0

13000 min → 130001 max

Mixed slopes: 1n0m1 ∀m
Stay min as long as possible, then apply f1

(Proof: really long!)
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Further directions

AP computable? (likely yes: details pending)

AP unbounded? If so, tight asymptotic bound? Same questions
for AP,δ .

Use the max-gap function γk(w) as a computable parametrized
complexity measure instead?
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