
1

Probabilistic automatic complexity of finite strings

Kenneth Gill *

Abstract. We introduce a new complexity measure for finite strings using probabilistic finite-
state automata (PFAs), in the same spirit as existing notions employing DFAs and NFAs, and
explore its properties. The PFA complexity AP (x) is the least number of states of a PFA for
which x is the most likely string of its length to be accepted. The variant AP,γ(x) adds a real-
valued parameter γ specifying a required lower bound on the gap in acceptance probabilities
between x and other strings. We prove AP,γ is γ-computable for all γ, relate AP to the DFA and
NFA complexities, and obtain a complete classification of binary strings with AP = 2. Finally,
we discuss several other variations on AP with a view to obtaining additional desirable properties.

Keywords: probabilistic automaton, finite-state automaton, automatic complexity, iterated func-
tion system, algorithmic information theory

1. Introduction

Informally, the Kolmogorov complexity of a finite string w is the size of the smallest Turing machine
which outputs w given no input. As a function, it is well-known to be noncomputable, and moreover
only defined up to an additive constant. These drawbacks have motivated several authors to define
complexity measures based on models of computation less powerful than the Turing machine, such
as context-free grammars [2, 3]. In 2001, Shallit and Wang introduced one such measure using de-
terministic finite-state automata (DFAs), defining AD(w) to be the number of states of the smallest

Address for correspondence: gillmathpsu@posteo.net
*Most of this work is part of the author’s Ph.D. dissertation at Penn State University [1]. The author is grateful to his

thesis advisors Jan Reimann and Linda Westrick for their invaluable help and support, to Jake Canel for several helpful
conversations, and to Bjørn Kjos-Hanssen for suggesting the proof of Theorem 5.2 as well as inspiring the project as a
whole. Finally, the author would like to thank the anonymous reviewers for their detailed comments which led to many
improvements in the presentation. This research was supported in part by NSF grant DMS-1854107.

gillmathpsu@posteo.net

2 K. Gill / Probabilistic automatic complexity

DFA for which w is the only string of its length to be accepted [4]. This measure is computable,
well-defined, and there is a polynomial-time algorithm to recover w from a witness for AD(w). Later
in 2013, Hyde defined a similar measure replacing DFAs with nondeterministic finite-state automata
(NFAs) [5, 6]. AN shares the advantages of AD over Kolmogorov complexity while additionally being
invariant under reversal and avoiding “dead states” (nonaccepting states with no out-transitions) often
present among witnesses for AD merely to satisfy the requirement of totality of the transition function.
The study of AN has been continued by Kjos-Hanssen, see e.g. [7, 8, 9, 10], as well as the recent book
[11]. Topics which have been investigated include the structure of the set of “AN -random” strings
(having maximal complexity for their length), computational complexity of finding witnesses to sev-
eral variations on AN , and bounds on the NFA complexity of various interesting families of strings,
such as the square-free or overlap-free words. Connections to information theory abound, including
notions of information distance and algorithmic fractal dimension defined through AN .

Inspired by the aforementioned work, we investigate what happens when deterministic or nonde-
terministic machines are replaced by probabilistic ones (PFAs), wherein each state transition occurs
with some probability and each word w is assigned a probability of acceptance ρM (w) by the PFA M .
We view M as describing w if w uniquely maximizes ρM among all strings of the same length. This
property can be phrased in terms of the so-called gap function, which measures how well M separates
w from other strings:

Definition 1.1. The gap function of a PFA M reading from the alphabet Σ is the map from Σ∗ to
[−1, 1] given by

gapM (w) = min{ ρM (w)− ρM (z) : z ∈ Σ|w| and z ̸= w }. (1)

If Σ|w| \ {w} is empty, by convention we set gapM (w) = ρM (w). In particular, if λ is the empty
string, gapM (λ) = ρM (λ).

The gap function is positive iff w is more likely than any other string of the same length to be
accepted, and we define the PFA complexity to be the least number of states needed for this to happen:

Definition 1.2. The probabilistic automatic complexity (PFA complexity) of w with respect to the
alphabet Σ is

AP (w,Σ) = min{ k : there is a k-state PFA M reading from Σ such that gapM (w) > 0 }. (2)

We always presume w to be in Σ∗. If Σ is understood from context, we simply write AP (w). In par-
ticular, unless otherwise remarked upon, it is assumed that Σ consists exactly of the letters appearing
in w.

This definition is probably the one most directly analogous to the definitions of AD and AN ,
and it turns out that AP is also computable, as AD and AN are (see Theorem 5.1 below). Unfor-
tunately, unlike AN but like AD, AP is not alphabet-independent: if w ∈ Σ∗

1 ∩ Σ∗
2, it may be that

AP (w,Σ1) ̸= AP (w,Σ2). (See [11, Theorem 1.28] for the statement about AD and AN .) For ex-
ample, AP (a

n, {a}) = 1, but AP (a
n, {a, b}) = 2 if b ̸= a. This is because no nonempty string

can have complexity 1 over an alphabet with more than one letter: a PFA with one state assigns the
same probability to every string. We have that AP (a

n,Σ) = 2 whenever |Σ| ≥ 2 by Theorem 4.1

K. Gill / Probabilistic automatic complexity 3

and Corollary 4.18. The same issue does not arise for AN since one is free in an NFA to omit any
transitions involving irrelevant letters. Later we will also see that the PFA complexity of a string and
its reversal can be different, like AD and unlike AN .

One peculiarity of AP is that M can witness AP (w) while ρM (w) is not very high, or not much
different from ρM (z) for other strings z of the same length. Is M really a good representation of w
if it can only slightly distinguish w from other strings? What if all potential witnesses M have this
property? We address this problem by defining a strengthened version of AP which includes a real-
valued parameter allowing one to specify a required lower bound on the gap between ρ(w) and the
next highest probability:

Definition 1.3. The probabilistic automatic complexity of w with gap γ ∈ [0, 1) is

AP,γ(w,Σ) = min{ k : there is a k-state PFA M reading from Σ such that gapM (w) > γ }.1 (3)

Thus AP,0(w,Σ) = AP (w,Σ). As with AP , we omit Σ when understood from context and
write AP,γ(w). For any γ, an automaton M witnessing AP,γ(w) must not only witness AP (w), but
must also give w a probability at least γ higher than any other string of its length. So, by increasing
the parameter γ, we increase the degree by which M recognizes w and decrease the ambiguity in
determining which string of length |w| is described by M . (This idea is further elaborated on after the
statement of Corollary 4.20 below.)

It turns out that AP,γ is always computable from a description of γ:

Theorem 5.1. For every finite alphabet Σ and every γ ∈ [0, 1), the function w 7→ AP,γ(w,Σ) is
γ-computable.

Of course, if γ is a computable number, this just means that w 7→ AP,γ(w) is computable.
(Section 5 clarifies precisely what is meant by a “description” of γ.) We also establish the almost-
everywhere uniform computability of AP,γ(w) as a function of both w and γ in Theorem 5.3, although
its proof does not extend to the case γ = 0.

Our other main result about AP is the following complete classification of binary strings with
complexity 2, which arguably helps to vindicate AP by showing that it does appear to capture some
intuitive structure in strings.

Theorem 4.1. If Σ = {i, j} and w ∈ Σ∗, we have AP (w,Σ) = 2 if and only if w is of the form

injm, injmi, in(ji)m, or in(ji)mj (22)

for some n ≥ 0, m ≥ 1.

One can say a bit more: a consequence of the proof of Theorem 4.1 is that whenever w ∈ Σ∗ with
|Σ| = 2 and Σ′ ⊃ Σ, then AP (w,Σ) = 2 implies AP (w,Σ

′) = 2 (Corollary 4.18). In other words,

1This is a slightly different definition from that originally given in the author’s dissertation [1], which required gapM (w) ≥
γ rather than >. The author has come to feel that the present definition is more natural. For the most part, only minor
amendments to the proofs of results involving AP,γ were needed as a result of this change.

4 K. Gill / Probabilistic automatic complexity

the property of being a nonconstant binary string with complexity 2 is alphabet-independent, and so
we can write AP (w) = 2 without ambiguity. (A string w is constant if it is of the form an for some
n ≥ 0, where a is a single letter. Otherwise w is nonconstant.)

The class of strings with AP = 2 is far larger than that with AN = 2, which is exactly the set of
strings of the form ijn, inj, (ij)n, or (ij)ni, as classified in [5]. In fact, AN is unbounded on strings
of the form injm, which implies

Corollary 4.20. The quantity AN (w)−AP (w) may be arbitrarily large among binary w.

AP,γ has a philosophically attractive feature not shared by AP which we now describe for the
sake of further motivating its study. Suppose one is given an automaton M as a “black box”, that is,
with no information whatsoever about its inner workings. All one can do is run it with some input
string, and check whether it accepts or rejects the string. Suppose further that an experimenter wishes
to test whether this automaton witnesses an upper bound for AP (w) for some string w. Then the
experimenter needs not only to check whether each z ∈ Σ|w| is accepted, but whether or not it will be
accepted with a lower bound λ on its probability of acceptance, for each λ in turn. (This would enable
them to decide if there is some particular w, λ with ρM (w) > λ but ρM (z) < λ whenever |z| = |w|
and z ̸= w. In other words, they would estimate a lower bound on gapM (w).) The experimenter
can only accomplish this by running the machine repeatedly on each input w to get some sense of the
expected value of ρM (w), up to some acceptable margin of error ε.

In his original paper introducing PFAs, Rabin [12] discusses a similar endeavor in the context of
establishing experimentally that w is in a given stochastic language, where a language is stochastic if
it is of the form {w ∈ Σ∗ : ρM (w) > λ } for some PFA M and λ ∈ [0, 1], called the cut-point. As
he points out, the law of large numbers implies that as long as ρM (w) ̸= λ, there is a finite number
N = N(w, ε) such that running N trials, counting the number s of successes, and comparing s/N
with λ will correctly determine if ρM (w) > λ with probability 1−ε. But, as he goes on to say, finding
N(w, ε) would depend on knowing ρM (w) in the first place.

Rabin’s solution is to only consider cut-points λ which are isolated for M , that is, such that
|ρM (w)− λ| ≥ γ for all w ∈ Σ∗ and some γ > 0. If one wants to run the above experiment to
test if ρM (w) > λ when λ is isolated, then the number of trials N needed to determine this within
margin of error ε now only depends on γ and ε, regardless of M . Knowledge of ρM (w) is not needed.
Of course, this is not a solution from a practical point of view if no such cut-point is given at the
outset, because now the experimenter would need to determine if λ is isolated for M and (if so) a
lower bound for its degree of isolation γ. The problem of determining if a given rational cut-point is
isolated for a given PFA is known to be Σ0

2-complete [13, Theorem 1].
But—back to our black-box experiment—if one specifies γ at the outset and looks for a witness

for an upper bound on AP,γ(w) rather than AP (w), the problem disappears and we still get that N
depends only on γ and ε, with both of these parameters now being chosen by the experimenter. To
see why, let a single trial consist of running every word of length |w| through the machine M once. If
s(w,N) is the number of acceptances of w in N trials, then there is a function N = N(γ, ε) such that
for each z ∈ Σ|w|, one correctly concludes with probability at least 1 − ε′ that ρM (w) − ρM (z) > γ
given [s(w,N) − s(z,N)]/N > γ, assuming ρM (w) − ρM (z) ̸= γ. Here ε′ is chosen small enough
that (1− ε′)|Σ||w|

> 1− ε. Since acceptances and rejections of words are presumed to be independent

K. Gill / Probabilistic automatic complexity 5

events, it follows that after N(γ, ε) trials, one correctly concludes with probability at least 1 − ε that
gapM (w) > γ.

This paper establishes several basic properties of AP and AP,γ and hopefully justifies their study
as having intrinsic interest, but many avenues of investigation are left unexplored. This is in part due to
both AP and AP,γ proving somewhat combinatorially difficult to reason with, aside from a few of our
results which follow quickly from straightforward matrix calculations. In particular there is nothing
we can say about the asymptotic behavior of either quantity: no example is known at the time of
writing which even suggests AP can be greater than 3. Indeed, the original motivation behind proving
the classification theorem (Theorem 4.1) was to show that AP can be greater than 2, which was until
then unclear. Then the most fundamental question we leave unanswered is probably

Question 1.4. Is AP unbounded? If not, what is its maximum value? Similarly when restricted to a
given finite alphabet, and similarly for AP,γ .

Remark 1.5. Probabilistic finite automata were independently introduced in 1963 by Michael Rabin
and J. W. Carlyle [12, 14]. Carlyle’s stochastic sequential machines are transducers with both input
and output behavior, while Rabin’s PFAs—which are sometimes also called stochastic acceptors—
can only accept an input string with some probability. The present work focuses only on PFAs as
defined by Rabin, although Carlyle-style machines have found wide applicability in machine learning
and pattern recognition; see [15] for a modern survey. A notion of transducer complexity of finite
strings has also been studied [16], but the approach taken there is most like that of the Kolmogorov
complexity rather than AD. We leave the probabilistic analogue for future work. There is, however,
an idea related to AP which has been studied for transducers in the machine learning literature. Given
a probabilistic finite-state transducer T , x is called the most probable string or consensus string of
T if it is generated by T with maximal probability among all strings, not just among those with the
same length [15]. One might ask if this notion should be adapted to PFAs, defining the complexity of
x instead as the smallest size (in some sense) of a PFA accepting x with unique highest probability
among all strings. But we will see in Proposition 4.10 that a single PFA can simultaneously witness
AP (x) for every one of an infinite family of strings x of similar structure. This ability arguably lends
AP a descriptive advantage over a notion resulting from viewing a PFA as only describing its most
probable string.

Remark 1.6. This paper is a rewritten and expanded version of the second chapter of the author’s
dissertation [1], and Proposition 3.1, Corollary 3.2, Theorem 4.2, Proposition 4.11, Corollary 4.19,
and Theorem 5.3 were already present in the latter work, as well as the content of Section 4.1 and
any lemmata used in the proof of Theorem 4.2. Propositions 3.3 and 3.4 also appeared there in a less
general form. All other results are new to the present article.

The structure of the rest of the paper is as follows. After collecting some formal definitions in the
next section, we state a few preliminary results in Section 3, including Proposition 3.1 relating AP

and AP,γ to AD and AN . Here we also discuss a few examples of the calculation of AP and AP,γ .
Section 4, which takes up over half of the paper, consists entirely of the proof of Theorem 4.1. This
proof exploits a correspondence between PFAs and iterated function systems detailed in Section 4.1.
Section 5 is devoted to proving the computability of AP and AP,γ , which involves techniques from

6 K. Gill / Probabilistic automatic complexity

computable analysis as well as an application of a classical result in model theory. Finally, in Section 6
we discuss several further variations on AP with an eye to mitigating its potential flaws as a complexity
measure.

2. Preliminaries

Our notation is mostly standard. Let Σ∗ be the set of finite strings over the finite alphabet Σ. Write
either xy or x⌢y for the concatenation of the strings x and y.

Definition 2.1. A probabilistic finite-state automaton (PFA) is an abstract machine specified by a
tuple M = (Q,Σ, P, π⃗, η⃗), where

• Q = { q1, . . . , qn } is the set of states;

• Σ is a finite alphabet;

• P is a set of n×n right-stochastic matrices {Pa :a ∈ Σ } describing the transition probabilities.
For each a ∈ Σ, (Pa)ij is the probability of going from qi to qj when letter a is read;

• π⃗ is a row vector of length n giving a probability distribution on initial states, so π⃗j is the
probability of the machine starting in state qj ; and

• η⃗ is a column vector of length n determining the set of accepting states, with η⃗i being 1 if qi is
accepting and 0 otherwise.

M is said to be over Σ if it reads from the alphabet Σ. When Σ is not important, we will omit its
mention, and likewise we usually identify Q with the set {1, . . . , n} for some n. Thus we may specify
a PFA by giving only π⃗, η⃗, and the matrices Pa. If all entries of π⃗ and each Pa are rational numbers,
then we refer to M as rational. A PFA can also be represented as a digraph, with edges labeled by
transition probabilities. For example, Figure 1 depicts the PFA over the alphabet {0, 1} with

P0 =

0 0 1

1 0 0

1 0 0

 , P1 =

.5 0 .5

0 1 0

.5 .5 0

 , π⃗ = (1, 0, 0), η⃗ =

0

0

1

 . (4)

Definition 2.2. If M is a PFA and x = x1x2 · · ·xℓ is a string, let

PM (x) = Px1Px2 · · ·Pxℓ
. (5)

Then the acceptance probability of x with respect to M is

ρM (x) = π⃗PM (x)η⃗. (6)

If M is understood from context we may simply write ρ(x), and similarly gap(x).

K. Gill / Probabilistic automatic complexity 7

s1
λ (1)

s2

s3

0 (1); 1 (.5)

1 (.5)

1 (1)

0 (1)

0 (1); 1 (.5)

1 (.5)

Figure 1: An example of a PFA. Numbers in parentheses are transition probabilities, so that the PFA
starts in state s1 with probability 1. Here s3 is the unique accepting state.

One can view a DFA as the special case of a PFA in which π⃗ is a coordinate vector and all Pas
are zero-one matrices. An NFA is then a slight relaxation of a DFA where π⃗ may be any zero-one
vector and each Pa may be any zero-one matrix. Of course, DFAs and NFAs are usually represented
as digraphs, but it is convenient for us to think of them via their transition matrices since we will
manipulate them directly alongside PFAs. The precise definitions of the DFA and NFA complexities
are as follows:

Definition 2.3. (Shallit and Wang [4])
The deterministic automatic complexity of a finite string x is

AD(x) = min{k : there is a k-state DFA accepting x

uniquely among strings of length |x|}.
(7)

In other words, thinking of a witnessing DFA M as a PFA, this says gapM (x) = 1, or equivalently
gapM (x) > 0 since the gap function takes only the values 0 and 1 when M is deterministic. It follows
immediately that AP (x) ≤ AD(x) for all x.

Definition 2.4. (Hyde [5])
The nondeterministic automatic complexity of x is

AN (x) = min{k : there is a k-state NFA accepting x

and with a unique accepting path of length |x|}.
(8)

Every DFA witnessing AD(x) is an NFA that accepts x with a unique accepting path of length |x|
(by virtue of its determinism), so AN (x) ≤ AD(x) for all x.

For the reader’s convenience, we repeat here the definitions of the gap function, AP , and AP,γ

from the introduction.

Definition 2.5. The gap function of the PFA M over Σ is the map from Σ∗ to [−1, 1] given by

gapM (w) = min{ ρM (w)− ρM (z) : |z| = |w| and z ̸= w }. (9)

8 K. Gill / Probabilistic automatic complexity

By convention we take gapM (w) = ρM (w) if the minimum is over the empty set. Then the proba-
bilistic automatic complexity of w over Σ with gap γ ∈ [0, 1) is

AP,γ(w,Σ) = min{ k : there is a k-state PFA M over Σ such that gapM (w) > γ }. (10)

The probabilistic automatic complexity of w is then

AP (w,Σ) = AP,0(w,Σ). (11)

If Σ is understood from context then we simply write AP (w) and AP,γ(w).

3. First results on AP

In this section we establish a few basic properties of AP and AP,γ , beginning by relating them to AD

and AN :

Proposition 3.1. (i) For any x, AP (x) ≤ AN (x) + 1.

(ii) AP (x) ≤ AP,γ(x) ≤ AD(x) for all x and γ ∈ [0, 1). For every x, there is a γ′ > 0 such that
AP,γ(x) = AP (x) for all γ ∈ [0, γ′).

Proof:

(i) Let M = (Q,Σ, P, π⃗, η⃗) be an NFA witnessing AN (x). Uniqueness of M ’s accepting path for
x means in particular that π⃗ is a coordinate vector. Then define a PFA M ′ = (Q′,Σ, P ′, π⃗′, η⃗

′
)

as follows. Let Q′ = Q ∪ {q}, where q is a new state not occurring in Q, to be listed after
all other states. Let π⃗′ = [π⃗|0] and η⃗

′
= [η⃗|0], where [⃗a|⃗b] denotes the concatenation of the

vectors a⃗ and b⃗. Write Xi for the ith row of any matrix X (i ≥ 1). For each a ∈ Σ, let P ′
a

be built as follows from Pa: if P i
a has at least one nonzero entry, let (P ′

a)
i = [P i

a|0]/(
∑

P i
a).

Otherwise, let (P ′
a)

i = [P i
a|1] = (0, . . . , 0, 1). Finally, if |Q| = k, then append a new row

(P ′
a)

k+1 = (0, . . . , 0, 1) (this corresponds to the new state q).

Then M ′ still has a unique accepting path of length |x|; in particular, x is the only string of
length |x| with ρM ′(x) positive. Therefore M ′ witnesses an upper bound for AP (x).

(ii) If γ < γ′ then AP,γ(x) ≤ AP,γ′(x), and if M is a DFA witnessing AD(x) then gapM (x) =
1. This gives the first statement. For the second statement, one can for example pick γ′ =
gapM (x)/2 for any witness M for AP (x).

⊓⊔

Corollary 3.2. For all x, AP (x) ≤ ⌊|x| /2⌋+ 2.

Proof:
Hyde showed in [5, Theorem 3.1] that AN (x) ≤ ⌊|x| /2⌋+1, so the bound immediately follows from
the proposition. ⊓⊔

K. Gill / Probabilistic automatic complexity 9

s1 s2 s3 s4

0 0

0 01

1

1

Figure 2: An NFA witnessing that AN (0001101) = 4.

The procedure described in the first part of Proposition 3.1 demonstrates that if AN (x) is witnessed
by an NFA such that every state has at least one out-transition for every letter, then AP (x) ≤ AN (x)
(because there are no rows of all zeros in the transition matrices, and the “dead state” q need not be
added).

As an example of this construction, according to Bjørn Kjos-Hanssen’s website,2 AN (0001101) =
4 via the NFA depicted in Figure 2. Here s1 is both the initial and accepting state. In matrix form, this
NFA can be represented as

P0 =

0 1 0 0

0 0 1 0

0 1 0 1

0 0 0 0

 , P1 =

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 1

 , π⃗ = (1, 0, 0, 0), η⃗ =

1

0

0

0

 . (12)

To transform this into a PFA, we need to add a fifth state due to the rows of zeros, and from the
construction we get

P ′
0 =

0 1 0 0 0

0 0 1 0 0

0 1/2 0 1/2 0

0 0 0 0 1

0 0 0 0 1

 , P ′
1 =

0 0 0 0 1

1 0 0 0 0

0 0 0 0 1

0 0 1/2 1/2 0

0 0 0 0 1

 , π⃗′ = (1, 0, 0, 0, 0), η⃗
′
=

1

0

0

0

0

 .

(13)
However, this is hardly optimal as a witness for AP , since actually AP (0001101) = 3 via

P0 =

0 1/2 1/2

0 1/2 1/2

0 1 0

 , P1 =

0 0 1

1 0 0

0 1 0

 , π⃗ = (1, 0, 0), η⃗ =

1

0

0

 . (14)

These and all other numerical examples mentioned below were verified with the SageMath math-
ematical software, using a code library developed by the author in order to more easily compute with
PFAs and weighted automata in general [17]. Using this library, one could for example verify that (14)
witnesses an upper bound for AP (0001101) as follows, entering the code into the Sage command line
while WeightedAutomaton.py is in the working directory:
2https://math.hawaii.edu/wordpress/bjoern/complexity-of-0001101/

https://math.hawaii.edu/wordpress/bjoern/complexity-of-0001101/

10 K. Gill / Probabilistic automatic complexity

sage.all.load("WeightedAutomaton.py")

A = WeightedAutomaton({’0’: [[0,1/2,1/2],

[0,1/2,1/2],

[0,1,0]],

’1’: [[0,0,1],

[1,0,0],

[0,1,0]]},

[1,0,0],[1,0,0])

A.is_highest(’0001101’)

The output True signifies that A assigns 0001101 the unique highest probability among strings
of length 7. If one so desires, one can run A(’0001101’) or A.prob(’0001101’) to find that this
probability is 13/16, and running A.gap(’0001101’) computes gapA(0001101) to be 1/16. The
above code is also present in the cited GitHub repository for the WeightedAutomaton library along
with similar code verifying the claimed properties of all other explicit examples given in this paper. It
may be found in the file paperexamples.ipynb.

No string x is presently known for which AP (x) is equal to the maximum possible value AN (x)+
1. Direct computations using the abovementioned code library have shown that all binary strings x of
length 10 or less have AP (x) ≤ 3, whereas many such strings have AN (x) = 4, 5, or 6. Theorem 4.3
implies that every x with AN (x) = 2 also has AP (x) = 2. Remembering that “AP (x)” without
specifying an alphabet is supposed to denote AP (x,Σ) where Σ is exactly the set of letters used in x,
we have that AP (x) = 1 if and only if x = an for some n ≥ 0, and this is also true for AN .

So far we have not mentioned any examples involving AP,γ . Experimentally, it appears that one
has to make the value of γ quite low in order to get small values of AP,γ , for all but very short
strings. This makes intuitive sense in view of the proof of Theorem 4.2, and more generally the
phenomenon of stability of a contractive iterated function system: all orbits converge to the attractor,
and correspondingly acceptance probabilities will tend to cluster together for longer strings, at least
for a generic automaton. As an example, if x = 0110, then a simple witness for AP (x) = 2 is the
PFA M given by

P0 =

(
0 1

1/2 1/2

)
, P1 =

(
1/2 1/2

0 1

)
, π⃗ = (1, 0), η⃗ =

(
1

0

)
. (15)

It follows from Proposition 4.10 that M witnesses that AP (01
m0) = 2 for all m, and one can calculate

that gapM (0110) = 1/16, gapM (0130) = 1/32, gapM (0140) = 1/64, and so on.
However, it is not necessarily the case that gaps strictly decrease for longer strings. The PFA

P0 =

 0 1 0

2/3 0 1/3

1/3 0 2/3

 , P1 =

1/3 2/3 0

2/3 1/3 0

0 0 1

 , π⃗ = (0, 0, 1), η⃗ =

1

0

0

 (16)

witnesses that AP (1
n0103) ≤ 3 for all n ≤ 15, and each of these strings is given probability 91

243
with gap 1

243 (the same almost certainly holds for all n, though we have not yet shown this). This

K. Gill / Probabilistic automatic complexity 11

is unsurprising since π⃗ is the (left) Perron-Frobenius eigenvector of P1. Of course, such a relation is
easily destroyed by perturbing the entries of π⃗ and P1.

It does not seem very easy to simultaneously make γ large and AP,γ small even for short strings.
One can get a gap of about 0.5609 for x = 0110 by using the 3-state PFA

P0 =

 0 0 1

0.22151 0.77485 0.00364

0.9995 0 0.0005

 , P1 =

0 0.5622 0.4378

1 0 0

0 1 0

 , π⃗ = (1, 0, 0), η⃗ =

0

0

1

 .

(17)
But among 2-state PFAs, the highest gap known for x at the time of writing is approximately 0.1775,
via

P0 =

(
0.16748 0.83252

0.98999 0.01001

)
, P1 =

(
0.66116 0.33884

0 1

)
, π⃗ = (1, 0), η⃗ =

(
1

0

)
. (18)

These automata were found by numerically optimizing the results of brute-force searching. In the
second case, the search was over roughly 850,000 2-state PFAs and turned up only one giving x a gap
greater than 1/6 (it was about 0.1719). Among the same set of PFAs, the largest gap found for 0130
was approximately 0.1178.

The next result should be compared with the facts that AD(xyz) ≥ AD(y) and AN (xyz) ≥
AN (y) for any strings x, y, z. (See [10, Lemma 12] and [5, Theorem 2.4]. The statement for AN can
be derived from AN (xy) ≥ AN (x) and the invariance of AN under string reversal.)

Proposition 3.3. For all strings x, y and all γ ∈ [0, 1), we have AP,γ(xy) ≥ AP,γ(y).

Proof:
Given γ, let M = (Q,Σ, P, π⃗, η⃗) witness AP,γ(xy). Let M ′ = (Q,Σ, P, π⃗′, η⃗) be a PFA with the
same configuration as M except for its initial state distribution, which will be π⃗′ = π⃗PM (x). Since
PM (x) is a stochastic matrix, π⃗′ is still a probability vector. By definition, PM (xw) = PM (x)PM (w)
for all strings w, so we have ρM ′(w) = ρM (xw) and consequently

gapM ′(w) = min{ ρM (xw)− ρM (xz) : z ∈ Σ|w| \ {w} } ≥ gapM (xw) (19)

for all w. In particular, gapM ′(y) ≥ gapM (xy) > γ, so M ′ witnesses an upper bound for AP,γ(y).
⊓⊔

One property of AN which motivated its introduction, as mentioned above, is that AN (x) =
AN (←−x), where←−x is the reversal of x:

←−x = xn · · ·x2x1 if x = x1x2 · · ·xn. (20)

By Theorem 4.1, the class of strings x with AP (x) = 2 is not closed under reversal, so AP does
not share this property.

In Section 6 we will take up the question of how one might recover the property by modifying AP .
Equality of AP (x) and AP (

←−x) is possible in at least some cases:

12 K. Gill / Probabilistic automatic complexity

Proposition 3.4. If AP (x) is witnessed by a PFA M = (Q,Σ, P, π⃗, η⃗) such that each Pa ∈ P is
doubly stochastic, and such that all nonzero entries of π⃗ are equal, then AP (

←−x) ≤ AP (x). If M
witnesses AP,γ(x) and one can additionally take π⃗ and η⃗ to have the same number of nonzero entries,
then AP,γ(

←−x) ≤ AP,γ(x).

Proof:
The idea is more or less the content of Exercise A.2.8 of Chapter 3 of [18]. Define the PFA M ′ =
(Q,Σ, P ′, π⃗′, η⃗

′
) by P ′

a = P T
a for each a ∈ Σ and π⃗′ = η⃗ T /s, where s =

∑
η⃗. If each entry of π⃗ is

either 0 or 1/n (for some n ≥ 1), then let η⃗
′
= nπ⃗T .

Intuitively, M ′ represents the automaton obtained by operating M in reverse. We have PM ′(←−x) =
PM (x)T , so

ρM ′(←−x) = (η⃗T /s)PM ′(←−x)(nπ⃗T) = ns−1 (π⃗PM (x)η⃗)T

= ns−1 (ρM (x))T = ns−1ρM (x).
(21)

The same calculation shows ρM ′(←−y) = ns−1ρM (y) for all y, so if ρM (x) > ρM (y), then
ρM ′(←−x) > ρM ′(←−y). Therefore M ′ witnesses AP (

←−x) ≤ AP (x) since M ′ and M have the same
number of states.

If π⃗ and η⃗ have the same number of nonzero entries, then n = s, and so ρM ′(←−y) = ρM (y) for all
y ∈ Σ∗. Hence gapM ′(←−x) = gapM (x) and the second statement follows. ⊓⊔

As a corollary of this fact together with Theorem 4.1 below, for most binary strings x such that
AP (x) = 2, the latter cannot be witnessed by a PFA as in the proposition. AP (

←−x) = AP (x) holds
whenever both quantities can be witnessed by such a PFA. An example is given by (16), which wit-
nesses AP (1

n0103) = 3 and can be turned into a witness for AP (0
3101n) ≤ 3 for all n ≤ 15 (at

least) using the procedure in the proof of Proposition 3.4. Since none of the latter family of strings
with n ≥ 2 can have complexity 2 by Theorem 4.1, it follows that AP (0

3101n) = 3 for 2 ≤ n ≤ 15
(at least).

4. Classification of binary strings with AP = 2

This section is devoted to proving the following theorem, restated from the introduction for the reader’s
convenience:

Theorem 4.1. If Σ = {i, j} and w ∈ Σ∗, we have AP (w,Σ) = 2 if and only if w is of the form

injm, injmi, in(ji)m, or in(ji)mj (22)

for some n ≥ 0, m ≥ 1.

This set of strings is significantly larger than the set of binary strings with NFA complexity 2. As
classified in [5], the strings with AN (w) = 2 consist exactly of

imj, ijm, (ij)m, and (ij)mi (23)

K. Gill / Probabilistic automatic complexity 13

for all m. All that can be generally said about AN (injm), for instance, is that it is no more than
min{n,m} + 1 [5, Example 4.1]. The proof of Corollary 4.20 shows that it is unbounded (see Sec-
tion 4.4).

The proof of this theorem will occupy a substantial portion of the rest of the paper, and we split it
into two halves, the forward and reverse directions:

Theorem 4.2. For w ∈ {i, j}∗, if AP (w) = 2, then w is of the form

injm, injmi, in(ji)m, or inj(ij)m for some n ≥ 0,m ≥ 1. (24)

Theorem 4.3. The values of AP (i
njm), AP (i

njmi), AP (i
n(ji)m), and AP (i

nj(ij)m) are equal to 2
for all n ≥ 0 and m ≥ 1.

Before proceeding to the very long proof, we take a moment to outline the plan of attack. Every
PFA M corresponds to an iterated function system (IFS) F = { fa : a ∈ Σ }, along with a starting
vector x⃗0, in such a way that ρM is completely recovered through the orbits of x⃗0 under F . (This is
detailed in Section 4.1.) The correspondence also works in reverse, and so we can use an IFS as a
proxy for a PFA. In particular, the question “for each n, which string of length n receives the unique
highest probability according to M?” is transmuted into the question “for each n, which sequence of
compositions of F of length n results in the unique highest value when starting from x⃗0?”

When M has two states and reads from the alphabet {0, 1}, we get a one-dimensional IFS con-
sisting of affine maps f0, f1 : [0, 1] → [0, 1] together with a starting value x0 ∈ [0, 1]. Theorem 4.2
is proved in Section 4.2 by starting with an arbitrary such IFS and undertaking an exhaustive combi-
natorial analysis of its dynamics in order to classify the strings of each length which receive maximal
probabilities. All of these strings are then seen to lie in one of the families in (22). (There is a vast
literature on the dynamics of IFSs, but most work is concerned with their asymptotics and properties
of their attractors, so is not directly helpful in this endeavor.) With a little extra work, in Proposi-
tion 4.10 we also get a characterization of the set of strings whose probabilities are uniquely maximal
with respect to any given IFS. The structure of this set depends in an essential way on the slopes of the
lines f0 and f1. For a generic IFS in which both slopes are positive, the maximal-probability strings
are of the form injm for some fixed n and all m ≥ 0. When both slopes are negative, instead we get
maximal-probability strings of the form in(ji)m and inj(ij)m for a fixed n and all m. And when one
slope is positive and the other is negative, we can get either injm for a fixed n and all m, or injmi for
a fixed n and all m. Section 4.2 gives a more detailed summary of the techniques used in the proof
and describes the overall breakdown into subcases.

In Section 4.3, we show that for every string w listed in (22) there are affine maps f0, f1 on
[0, 1] and an x0 ∈ [0, 1] such that the IFS (f0, f1, x0) corresponds to a PFA which witnesses that
AP (w) ≤ 2. This is done in a rather indirect way which exploits the “fixed n and all m” pattern
referenced above—that is, roughly speaking, a generic two-state PFA witnesses the complexity of a
family S of strings consisting of a fixed constant prefix followed by any number of repetitions of a
fixed string of length 1 or 2, with in some cases a single extra letter tacked onto the end. Hence it is
enough to find, for each n and each possible repeated pattern s, a PFA such that the members of S
have prefixes of length n and pattern s. (In other words, one needs only to worry about the “fixed n”
since “all m” is automatically satisfied.) To do so, we split the strings in (22) into seven subsets based

14 K. Gill / Probabilistic automatic complexity

on s, with each set corresponding to a certain subcase of the proof of Theorem 4.2 in which elements
of that set must receive maximal probabilities according to a given IFS. For each of these sets and
each n, we prove that there is an IFS meeting exactly the conditions of the corresponding subcase and
whose family of maximal-probability strings has a prefix of length n. A detailed summary of how
exactly this is accomplished is given at the start of Section 4.3.

4.1. The iterated function system approach

An iterated function system (IFS) on a compact metric space X is a dynamical system consisting of
a finite set of continuous maps f1, . . . , fn on X , viewed as inducing a semigroup action on X under
composition. If X is Rn or a compact subset of it, and the maps fi are affine maps, then the IFS is
called affine. It is well-known that the attractors of contractive IFSs are fractals, and the use of affine
IFSs for efficient representation of fractal images has been studied [19, 20, 21].

Our interest in IFSs is, for present purposes, limited to the fact that one may obtain an IFS through
the acceptance probability function of a PFA, and in doing so shed light on the family of strings whose
complexity the PFA witnesses. Connections between IFSs and PFAs are already known: Culik and
Dube [22, 20] in effect use PFAs as one method of generating fractal images, as an alternative to
directly employing IFSs. They also introduce probabilistic affine automata, a generalization of PFAs
in which each input letter corresponds to an affine map to be applied with some probability. (See [23]
for a more recent study of this idea.)

Kocić and Simoncelli in [24] demonstrated a correspondence between IFSs given by a set of
stochastic matrices and affine IFSs on lower-dimensional simplices. We present this correspondence
in a more elementary formulation adapted to PFAs, showing that the PFA’s acceptance probability
function descends to the IFS in a natural fashion. Let M = (S,Σ, P, π⃗, η⃗) be a PFA with k states. If
there are 0 or k accepting states, then ρM is identically 0 or 1, respectively, so assume without loss
of generality that there are between 1 and k − 1 accepting states. By permuting the states of M (and
hence the rows and columns of π⃗, η⃗, and each Pσ), we may assume that the kth state is not accepting.

Recall that if |w| = n, then ρM (w) = π⃗PM (w)η⃗, where PM (w) =
∏n

i=1 Pwn−i . This just means
that ρM (w) is a sum of up to k − 1 elements of the row vector π⃗PM (w). We can think of each
multiplication by a Pσ as updating the state distribution π⃗, and of π⃗ itself as representing the state
distribution π⃗(λ) after reading the empty string λ. Then let

π⃗(w) =

(
p1(w), p2(w), . . . , pk−1(w), 1−

∑
i<k

pi(w)

)
= π⃗(λ)PM (w) (25)

be the state distribution after reading a string w. Now, the last component of π⃗(w⌢σ) only depends on
its first k − 1 components together with the first k − 1 columns of Pσ. Since the kth state of M is not
accepting, ρM (w⌢σ) thus depends only on the first k − 1 components of π⃗(w), and if we only care
about recovering ρM then we can drop the kth component from π⃗(w) without losing any information.

So, let a⃗i be the ith row of Pσ truncated to its first k − 1 entries, let y⃗(w) = π⃗(w) ↾ (k − 1), and
let 1⃗m,n be the m × n matrix of all 1s. Also let U be Pσ with its last row and column deleted (so the
rows of U are the vectors a⃗i for i < k). Then for any σ ∈ Σ,

y⃗(w⌢σ) = y⃗(w)U +
(
1−

∑
y⃗(w)

)
a⃗k = a⃗k + y⃗(w)

(
U − 1⃗k−1,1a⃗k

)
. (26)

K. Gill / Probabilistic automatic complexity 15

y⃗(w) is an element of the (k − 1)-dimensional unit simplex Sk−1, so we identify w 7→ π⃗(w⌢σ)
with the map fσ : Sk−1 → Sk−1 that sends x⃗ to a⃗k + x⃗B, where B = U − 1⃗k−1,1a⃗k. Note that the
entries of B may be negative. Multiplication by Pσ thus corresponds to composition by fσ. If we give
the IFS consisting of the functions fσ the starting vector x⃗0 = (p1(λ), p2(λ), . . . , pk−1(λ)), then we
have

ρM (w) =
∑{

(fwn ◦ fwn−1 ◦ · · · ◦ fw0(x⃗0))i : the ith state of M is accepting
}
, (27)

where v⃗i here denotes the ith component of the vector v⃗ and where w = w0w1 · · ·wn. Hence for any
k-state PFA M there is an affine IFS on Sk−1 whose iterations exactly recover the function ρM in the
above fashion.

In the other direction, suppose we are given a finite set of affine maps fσ : x⃗ 7→ a⃗+ x⃗B on Sk−1,
where a⃗ and B depend on σ, along with a starting vector x⃗0 = (p1, . . . , pk−1). We build a PFA M as
follows. Let Ã and B̃ be the k × k matrices given by Ã = 1⃗k,1

(
a⃗ 1−

∑
a⃗
)

and

B̃ =

(
1⃗k−1,1

0

)(
B −B1⃗k−1,1

)
=

 B

−
∑

i<k B1,i

...
−
∑

i<k Bk−1,i

0⃗ 0

 . (28)

Then let
Pσ = Ã+ B̃ and π⃗ = π⃗(λ) =

(
x⃗0 1−

∑
x⃗0

)
∈ Rk. (29)

Also define π⃗(w) for any w as before. Then Pσ is stochastic: first, each row clearly sums to 1 as
the row sums of Ã and B̃ are all 1 and 0, respectively. If e⃗i is the ith standard basis vector in Rk−1,
then fσ(e⃗i) is the sum of a⃗ and the ith row of B, i.e., the upper left (k − 1) × (k − 1) submatrix of
Pσ. From a⃗ = fσ (⃗0) ∈ Sk−1 and fσ(e⃗i) ∈ Sk−1 it follows that each entry of Ã+ B̃ is in [0, 1].

One can check that π⃗(λ)Pσ ↾ (k − 1) = a⃗ + x⃗0B = fσ(x⃗0). Inductively we have that π⃗(w⌢σ) ↾
(k − 1) = fσ(x⃗) if x⃗ = π⃗(λ)PM (w). Now, the data we have so far does not uniquely specify a PFA
M = ({1, . . . , k},Σ, {Pσ}, π⃗, η⃗), because nothing about the vector of accepting states η⃗ is implied
by the IFS we started with except that the kth state should not be accepting. Thus the same IFS
can be made to correspond to any PFA M having the π⃗ and matrices Pσ given above, and such that
the last state is not accepting. The equation (27) holds for any such M and w, which completes the
correspondence.

Since we will only apply this correspondence to two-state automata in the present work, we sep-
arately outline this case for clarity. Given a two-state PFA M , write π⃗ as (p, 1 − p). Assume by
permuting the states that η⃗ = (1, 0)T . For each σ ∈ Σ, write

Pσ =

(
aσ + bσ 1− aσ − bσ

aσ 1− aσ

)
, (30)

where bσ is allowed to be negative. Then for each w ∈ Σ∗, we have

ρ(w⌢σ) =
(
ρ(w) 1− ρ(w)

)(aσ + bσ 1− aσ − bσ

aσ 1− aσ

)(
1

0

)
= aσ + bσρ(w). (31)

16 K. Gill / Probabilistic automatic complexity

We can thus associate with Pσ the “incremental probability function”

fσ(x) = aσ + bσx (32)

mapping [0, 1] into itself. Viewing p as ρ(λ), we obtain the IFS (fσ)σ∈Σ with starting value x0 = p
such that for any word w = w1w2 . . . wn,

ρ(w) = fwn ◦ fwn−1 ◦ · · · ◦ fw1(x0). (33)

In the other direction, starting from an IFS given by affine maps fσ on [0, 1] together with x0,
setting π⃗ = (x0, 1 − x0) and defining the matrices Pσ as in (30) produces a PFA whose acceptance
probability function satisfies (33).

The set of w such that an upper bound for AP (w) is witnessed by M is exactly the set of w
describing a sequence of compositions strictly maximizing the value along the orbit of x0 under this
IFS. This idea will be exploited heavily throughout the following section.

4.2. Proof of Theorem 4.2

We will establish in this section that any two-state PFA over a binary alphabet can only witness the
complexity of strings in one of the forms given in the theorem, i.e.,

injm, injmi, in(ji)m, or inj(ij)m, (34)

if it witnesses anything at all. Permuting the underlying alphabet does not change the complexity of
a string, as it corresponds merely to permuting the maps fa of the IFS, or equivalently the transition
matrices Pa of the original PFA. Therefore, any statement in this section about a string should be
understood to apply equally well to its bit-flip (i.e., the result of permuting 0 and 1), by switching the
roles of f0 and f1.

Assume we are given a two-state PFA represented by the IFS

f0(x) = a+ bx and f1(x) = c+ dx (35)

with starting value x0 ∈ [0, 1], where f0 and f1 map [0, 1] into itself. In particular, the latter means that
a, c ∈ [0, 1], b ∈ [−a, 1− a], and d ∈ [−c, 1− c]. We use the word “orbit” to mean any forward orbit
of x0 under the semigroup action generated by f0 and f1, that is, the orbit of x0 under some particular
sequence of compositions of f0 and f1. We always omit parentheses when composing functions, so
that e.g. f2

0x = f0(f0(x)). By convention we define f0
i to be the identity map. If an input to a

function is not specified in some (in)equality, then it should be taken to mean the (in)equality holds
for all inputs, e.g., f0 > f1 means f0x > f1x for all x (in [0, 1] or in some smaller domain specified in
context). For brevity, we describe a probability as n-maximal (n-minimal) if it is maximal (minimal)
among the probabilities of strings of length n. We also refer to an n-maximal (n-minimal) probability
as simply an n-maximum (n-minimum). If n is clear from context, we may call such a probability
maximal (minimal) or a maximum (minimum). In general, we speak of maxima and minima as though
they were unique, but this is not necessary for the argument to work; see item (4) below. We say the
IFS witnesses a string w if it witnesses that AP (w) ≤ 2, i.e., ρ(w) is uniquely maximal. The following
elementary observations will be useful throughout:

K. Gill / Probabilistic automatic complexity 17

Fact 4.4. (1) For i ∈ {0, 1}, if fi does not coincide with the line y = x, then fi has a unique fixed
point in [0, 1], towards which it contracts at exponential speed with rate equal to the absolute
value of its slope. The fact that this point occurs in [0, 1] is a consequence of the assumption
that f0 and f1 map [0, 1] into itself, as they must then intersect y = x there. If one of the maps
is y = x, or more generally if the two maps commute, then only constant strings can have
maximal probability because then the only determining factor of ρ(w) is the number of 0s and
1s in w. For this reason, outside of Lemma 4.5 below, we will always assume that f0 and f1 do
not commute.

We will use r0 and r1 to denote the fixed points of f0 and f1, respectively. By abuse of notation,
r0 and r1 refer either to the x-coordinates of these points or to the actual points in [0, 1]2. It will
be clear which is meant from the context. We have r0 = a/(1− b) and r1 = c/(1− d).

(2) If fi has positive slope, then it maps [0, ri) into itself and (ri, 1] into itself. If it has negative
slope, it maps [0, ri) into (ri, 1] and vice versa. (If its slope is 0, of course, it sends every point
to ri.)

(3) If a probability x is n-maximal, then x is either the image of an (n − 1)-maximum under a
map of positive slope, or the image of an (n − 1)-minimum under a map of negative slope.
This is simply because when fi has positive slope, x < y if and only if fix < fiy, and if fi
has negative slope then x < y iff fix > fiy. Hence we need only consider the maximum and
minimum probabilities of each length in order to determine the maximal-probability strings.
(Note that this need not be true for PFAs with more than two states. However, it does hold for
2-state PFAs if more maps are involved, i.e., if the size of the alphabet is increased.)

(4) Suppose f0 and f1 intersect at the single point (ix, iy) ∈ [0, 1]2, and that the maximum or
minimum probability of some length turns out to equal ix. (We always assume the maps do not
coincide, since no strings can be witnessed if they do.) Then no further probabilities in the same
orbit can be unique, since f0ix = f1ix. In this case, no further strings are witnessed if their
probabilities are in the same orbit as ix. We assume for simplicity that this does not happen in
the arguments that follow. This does not lose any generality, because if ix happens to be attained
as the maximal or minimal probability in some orbit, then nothing changes about the behavior
of the IFS except for the lack of uniqueness of the subsequent maxima and minima. (See also
Proposition 4.10 below.)

Fact 4.4(3) is really the key to the whole proof of Theorem 4.2. The overall argument will need to
be split into several major cases, but within each case, we have a kind of inductive structure wherein
for each n, the (n + 1)-maximum and (n + 1)-minimum strings are obtained by appending a single
letter to the n-maximum and/or n-minimum. Which letter to append to which string is determined
using a set of inequalities amounting to a description of the relative effects on ρ(w) of appending
different strings of lengths 1, 2, and 3. For example, “f1f0 < f0f1” should be interpreted as meaning
that appending 10 to a string always results in a higher probability than appending 01 to the same
string. These inequalities, among other things, are collected in the following technical lemma:

18 K. Gill / Probabilistic automatic complexity

Lemma 4.5. Let f0 = a + bx and f1 = c + dx be maps from [0, 1] into itself. Assume that a ≤ c,
that b > d, and that the maps intersect at the unique point (ix, iy), not necessarily in [0, 1]2. Observe
that if we did have (ix, iy) ∈ [0, 1]2, then a ≤ c would already imply b > d.

(a) If neither map is the identity, then either both maps fix ix, both maps strictly decrease ix, or both
maps strictly increase ix.

(b) Both maps fix ix, i.e., iy = ix, iff r0 = r1 = ix iff f0f1 = f1f0.

(c) Both maps decrease ix, i.e., iy < ix, iff r0 < r1 < ix iff f0f1 < f1f0 iff f0f2
1 < f2

1 f0.

(d) Both maps increase ix, i.e., iy > ix, iff r0 > r1 > ix iff f1f0 < f0f1 iff f2
1 f0 < f0f

2
1 .

(e) If f0 and f1 both have negative slopes, and if neither fixes ix, then |r0 − r1| < |r1 − ix|.

(f) Suppose f0 and f1 both have negative slopes. If both maps decrease ix, then if x ∈ [r0, ix), every
orbit of x remains inside (−∞, ix). If both maps increase ix, then if x ∈ (ix, r0], every orbit of x
remains inside (ix,∞).

Proof:

(a) By definition, ix is the unique value of x such that f0x = f1x.

(b) The first equivalence is immediate from the definition of ri. For the second equivalence, notice
f0f1x = a+ bc+ bdx and f1f0x = c+ ad+ bdx. Then

f0f1 = f1f0 ⇐⇒ a+ bc = c+ ad ⇐⇒ a/(1− b) = c/(1− d), (36)

i.e., f0f1 = f1f0 iff r0 = r1, and this happens iff they both equal ix since r0 and r1 both lie on
the line y = x.

(c) Both r0 and r1 are less than ix in this case, because the maps contract towards their fixed points,
so if fix < x then x > ri. We have ix = (c − a)/(b − d) and iy = (bc − ad)/(b − d).
Remembering that our assumptions imply b > d no matter the sign of each, and observing that
neither b nor d equals 1, we have ix > iy iff

c− a

b− d
>

bc− ad

b− d
⇐⇒ c− a > bc− ad ⇐⇒ c(1− b) > a(1− d)

⇐⇒ c

1− d
>

a

1− b
⇐⇒ r1 > r0.

(37)

Since r1 > r0 ⇐⇒ c + ad > a + bc ⇐⇒ f1f0 > f0f1, this also completes the second
equivalence. For the third, note f0f2

1x = a+ b(c+ cd+ d2x) and f2
1 f0x = c+ cd+ d2(a+ bx).

Then
f0f

2
1x < f2

1 f0x ⇐⇒ a+ bc+ bcd+ bd2x < c+ cd+ ad2 + bd2x

⇐⇒ d(bc− ad) < (c− a)− c(b− d) ⇐⇒ c+ d
bc− ad

b− d
<

c− a

b− d

⇐⇒ c+ diy < ix ⇐⇒ f1iy < ix ⇐⇒ f2
1 ix < ix.

(38)

K. Gill / Probabilistic automatic complexity 19

The last inequality holds iff r1 < ix (as f2
1 contracts ix towards its fixed point r1), which happens

iff ix > iy by the first equivalence and by part (a).

(d) This follows by swapping “>” with “<” everywhere in the argument for part (c).

(e) By writing c = r1(1 − d), one can rearrange the formula iy = c + dix to obtain d = (iy −
r1)/(ix − r1). Since |d| ≤ 1, this implies |iy − r1| ≤ |ix − r1|. We will finish the proof by
showing that when b < 0, then in fact ix > iy iff iy < r0 and ix < iy iff iy > r0. That is,
depending on whether both maps decrease or increase ix, we have either iy < r0 < r1 < ix or
iy > r0 > r1 > ix. Then

|iy − r1| = |iy − r0|+ |r0 − r1| > |r0 − r1| , (39)

and one gets |r0 − r1| < |iy − r1| ≤ |ix − r1|.

So, iy < r0 if and only if

bc− ad

b− d
<

a

1− b
⇐⇒ (bc− ad)(1− b) < a(b− d) ⇐⇒ bc− b2c+ abd < ab

⇐⇒ bc(1− b) < ab(1− d) ⇐⇒ c(1− b) > a(1− d) ⇐⇒ c

1− d
>

a

1− b
,

(40)

i.e., if and only if r1 > r0, which is equivalent to ix > iy. (The change from < to > in the second
line is because b < 0.) It is clear that one can switch “<” and “>” everywhere in this argument
to obtain that iy > r0 iff ix < iy, and the proof is complete.

(f) For the first claim, by assumption iy < ix and so r0 < r1 < ix. Since f0ix = f1ix, we have
f0f1ix = f0f0ix, which is less than ix. This implies that r01, the fixed point of f0f1, is also
less than ix: if f0f1 decreases the value of a point, then that point must be above r01. As f0f1
contracts to r01, we have that f0f1x < ix whenever x < ix. In other words, if ρ(w) < ix, then
ρ(w⌢10) < ix too. The analogous statement holds for f1f0, i.e., ρ(w) < ix implies ρ(w⌢01) <
ix. Finally, since |r0 − r1| < |r1 − ix| by part (e), f1 always sends points in [r0, ix) to points
below ix (and of course the same statement is clearly true for f0). This is clear if x ∈ [r1, ix).
If x ∈ [r0, r1), then |f1x− r1| < |x− r1| < |r0 − r1| < |ix − r1|, so f1x is closer to r1 than
ix is, and must be less than ix. Overall, then, we have that once an orbit enters [r0, ix), it stays
below ix. The second claim can be proven by switching “<” and “>” everywhere in the above
argument.

⊓⊔

An important feature of the analysis in Lemma 4.5 is that under the stated assumptions on f0 and
f1, they can lie in one of only three possible configurations: intersecting at their shared fixed point,
intersecting above both of their fixed points (in which case r0 < r1), and intersecting below both
of their fixed points (in which case r1 < r0). Since we are assuming the maps do not commute,
the first configuration is automatically ruled out, so we have that either both the maps increase ix or
both decrease it—and Lemma 4.5 furnishes each of these cases with very specific information about

20 K. Gill / Probabilistic automatic complexity

the behavior of f0 and f1. Along with Fact 4.4(3), then, this dichotomy goes a long way towards
minimizing the number of possible subcases that must be considered in the proof.

Now begins the main body of the proof of Theorem 4.2. It is split into four cases: the maps do
not intersect, they intersect and have positive slope, they intersect and have negative slope, and they
intersect with one having positive and the other having negative slope. The last three cases are each
split into two further subcases, based on whether the maps both increase or both decrease ix.
Case 1: f0 and f1 do not intersect in (0, 1). Suppose without loss of generality that f1x > f0x for all
x ∈ (0, 1), so that a ≤ c. If both maps have nonnegative slope, it follows that ρ(1n) is maximal for all
n. If both have negative slope, then appending 0 to a maximal probability always leads to a minimal
probability, and appending 1 to a minimal probability always leads to a maximal probability. Therefore
(01)n and 1(01)n are maximal for all n, as f0x0 ≤ f1x0, with strict inequality if x0 ∈ (0, 1). If f1 has
positive and f0 has negative slope, 1n is maximal for all n; note the ranges of f0 and f1 cannot overlap
here, except possibly at one point if ix = 0. And if f1 has negative and f0 positive slope, then 0n1 is
maximal for all n: since f0 < f1 (except possibly at one point if ix = 1), every maximal-probability
string must end with a 1, so that its probability is the image under f1 of a minimal probability. A
minimum can only be reached by a string of all 0s.
Strings witnessed in this case: 1n, (01)n, 1(01)n, 0n1.

Assumption 4.6. From now until the end of the proof of Theorem 4.2, we always make the following
assumptions:

• a < c.

• f0 and f1 intersect at the unique point (ix, iy) ∈ (0, 1)2.

• f0 and f1 do not commute.

As noted in Lemma 4.5, the first two items taken together imply that b > d and that r0, r1, and ix are
all distinct. Observe that if a = c then ix = 0, which falls under Case 1 above, and so taking a < c is
no loss of generality here since we are working only up to permuting f0 and f1.

Case 2: both f0 and f1 have nonnegative slopes. Specifically, assume a, b, c ≥ 0 and d > 0 (the case
b = d = 0 is trivial), as well as Assumption 4.6. There are then two possible subcases of this case,
which are illustrated in Figure 3:

(a) Both f0 and f1 decrease ix, or in other words (ix, iy) lies below the line y = x. Then we must
have r0 < r1 < ix, and 0n01m is witnessed for all m, where n0 ≥ 0 is least such that fn0

0 x0 < ix
(taking f0

0 to be the identity map). This is because f0x > f1x for x > ix, but iterating it will
eventually cause the value to drop below ix, and from that point on, f1 > f0. We also witness 0ℓ

for ℓ ≤ n0. If x0 < ix then we have f1 > f0 from the start.

(b) Both f0 and f1 increase ix, i.e., (ix, iy) lies above the line y = x. Then ix < r1 < r0, and 1n00m

is witnessed for all m, where n0 ≥ 0 is least such that fn0
1 x0 > ix. The reasoning is exactly

analogous to that in (a).

K. Gill / Probabilistic automatic complexity 21

r0 r1 ix

f0

f1

(a) Both maps decrease ix, i.e., (ix, iy)
lies below the line y = x

ix r1 r0

f0

f1

(b) Both maps increase ix, i.e., (ix, iy)
lies above the line y = x

Figure 3: Subcases for f0, f1 with positive slope (Case 2)

Strings witnessed in the above case: 1ℓ, 0n1m, 1n0m.
Case 3: both f0 and f1 have negative slopes. As before we also work under Assumption 4.6. The
special case b = 0 and d < 0 is discussed under Case 4 below, so assume b and d are both strictly
negative here. Recall that having negative slopes means each fi “flips x over” ri: if x < ri, then
fix > ri, and vice versa. If we start an orbit with a maximal probability of length 1, then the orbit
can only lead to maximal probabilities for odd-length strings (and this is the only way to witness
odd-length strings). This is accomplished by extending a string on even lengths in order to achieve a
minimal probability. For the same reason, if we start an orbit with a minimal probability, then only
even-length strings may have maximal probabilities in that orbit. The two essentially different cases
for the configuration of f0 and f1 are shown in Figure 4.

(a) Both f0 and f1 decrease ix. Then r0 < r1 < ix. Recall that by Lemma 4.5(f), once an orbit enters
[r0, ix), it stays below ix forever.

Suppose x0 > ix and we start an orbit with the maximal-probability string 0. Then ρ(0) < ix, and
ρ(02) is minimal. If ρ(02) > ix, then ρ(03) is maximal, since f0 > f1 above ix. Every (2ℓ + 1)-
maximal probability is an image of a 2ℓ-minimal probability, so as long as ρ(02ℓ) > ix, we have
that ρ(02ℓ+1) is maximal and ρ(02ℓ+2) is minimal. Let n0 be least such that ρ(02n0) < ix. Once
this happens, since ρ(02n0) is minimal and f0 < f1 below ix, ρ(02n01) is maximal.

ρ(02n0) is between r0 and ix, so we know that its future orbit will always stay below ix by Lemma 4.5(f).
This means that a maximum is always reached by appending 1 to a minimum, and a minimum is
always reached by appending 0 to a maximum. Hence, among odd-length strings with length greater
than 2n0 + 1, we witness 02n01(01)m for all m ≥ 0.

Next, say x0 > ix and we start our orbit with the minimal-probability string 1. Then ρ(11) is
maximal. If ρ(11) > ix, then ρ(13) is minimal and ρ(14) is maximal. So we initially witness 12ℓ for

22 K. Gill / Probabilistic automatic complexity

r0 r1 ix

f0

f1

(a) Both maps decrease ix, i.e., (ix, iy)
lies below the line y = x

ix r1r0

f1

f0

(b) Both maps increase ix, i.e., (ix, iy)
lies above the line y = x

Figure 4: Subcases for f0, f1 with negative slope (Case 3)

ℓ ≤ n0, where n0 is least such that ρ(12n0) < ix. Among longer strings, we then witness 12n0(01)m

for all m. To see this, one argues in a similar way as when x0 < ix, since f1f0x < ix when
x ∈ [r0, ix). The only difference is that once ρ(12n0) < ix, the (2n0 + 1)-minimal probability is
attained by ρ(12n00), as f0x < f1x for x < ix. Then appending a 1 gives the (2n0 + 2)-maximum
ρ(12n001), and we continue appending 01 to keep the min-max pattern going and get (2n0 + 2k)-
maximal probabilities for all k. This concludes the subcase x0 > ix.

Finally, suppose x0 < ix. This is analogous to the case x0 > ix, but with even-odd parity swapped
everywhere. In fact, we only need consider the case x0 < r0, because when x0 ∈ [r0, ix), we know
that all orbits stay below ix, so for such x0 we witness (10)m and 0(10)m for all m ≥ 0.

Now, if x0 < r0 and we start with the maximal-probability string 1, we at first witness 12ℓ+1 among
odd-length strings, as long as ρ(12ℓ+1) > ix. If n0 is least such that ρ(12n0+1) < ix, then we witness
12n0+1 and subsequently 12n0+1(01)m for all m ≥ 1. This is because once ρ(12n0+1) < ix, then the
(2n0 + 2)-minimum is ρ(12n0+10), followed by the (2n0 + 3)-maximum ρ(12n0+101), and contin-
uing to append 01 keeps the min-max pattern going. Starting instead with the minimal-probability
0, we witness 02ℓ+2 among even-length strings as long as ρ(02ℓ+1) > ix. If n0 is least such that
ρ(02n0+1) < ix, then ρ(02n0+1) is minimal but ρ(02n0+2) is not maximal. Therefore ρ(02n0+11)
must be maximal, and we witness 02n0+11(01)m for all m ≥ 0. The pattern of appending 01 can be
repeated forever to obtain maximal probabilities because ρ(02n0+11) ∈ [r0, ix) and applying f1f0
will always stay below ix, where f0 is minimal and f1 is maximal.

Strings witnessed in the above case: 02m, 12m+1, 02n1(01)m, 12n(01)m, 02n+11(01)m.

(b) Both f0 and f1 increase ix. Then ix < r1 < r0. By Lemma 4.5(f), once an orbit enters (ix, r0], it
stays above ix.

K. Gill / Probabilistic automatic complexity 23

Let x0 < ix. By starting with the maximal ρ(1), we have that ρ(12ℓ+1) is maximal as long as
ρ(12ℓ) < ix. (Note that ρ(12ℓ+1) is always greater than r1 and hence also ix.) If n0 is least such
that ρ(12n0) > ix, then ρ(12n0) is 2n0-minimal but ρ(12n0+1) is not (2n0 + 1)-maximal. Therefore
ρ(12n00) is (2n0 + 1)-maximal, and since ρ(12n0) ∈ (ix, r0], we have that ρ(12n00(10)m) remains
above ix for all m ≥ 0 and is therefore maximal. By starting instead with the minimal ρ(0), we have
that ρ(02ℓ+2) is maximal as long as ρ(02ℓ) < ix. If n0 is least such that ρ(02n0) > ix, then ρ(02n0)
is 2n0-maximal but ρ(02n0+1) is not (2n0 + 1)-minimal, since f0 > f1 for x > ix. Therefore
ρ(02n01) is minimal, and because ρ(02n0) ∈ (ix, r0], its future orbits stay above ix and we have
ρ(02n0(10)m) maximal for all m ≥ 0.

If x0 ∈ (ix, r0], then we witness (10)m and 0(10)m for all m ≥ 0, as in case (a) when x0 ∈ [r0, ix).
If x0 > r0 and we start with the maximal ρ(0), then ρ(02ℓ+3) is maximal and ρ(02ℓ+2) is minimal as
long as ρ(02ℓ+1) < ix. If n0 is least such that ρ(02n0+1) > ix, then ρ(02n0+1) is (2n0+1)-maximal
but ρ(02n0+2) is not (2n0 + 2)-minimal. Instead, ρ(02n0+11) is (2n0 + 2)-minimal, and since
ρ(02n0+1) ∈ (ix, r0], all future orbits stay above ix, where f0 > f1. Therefore ρ(02n0+1(10)m) is
maximal for all m ≥ 0. If instead we start with the minimal ρ(1), then ρ(12ℓ+2) is maximal as long
as ρ(12ℓ+1) < ix. If n0 is least such that ρ(12n0+1) > ix, then ρ(12n0+1) is (2n0 + 1)-minimal but
ρ(12n0+2) < ρ(12n0+10), which is now (2n0 + 2)-maximal. Since ρ(12n0+1) ∈ (ix, r0], all of its
future orbits stay above ix, and thus ρ(12n0+10(10)m) is maximal for all m ≥ 0.

Strings witnessed in the above case: 12m+1, 12n0(10)m, 02n+1(10)m, 12n+10(10)m.
Case 4: f0 has positive slope and f1 has negative slope. The basic possibilities are illustrated in
Figure 5. As before, we also make Assumption 4.6.

(a) Both f0 and f1 decrease ix. Lemma 4.5 implies that this is equivalent to f1f0x > f0f1x for all x,
so that appending 01 always gives a higher probability than appending 10 would to the same string.
Assume for now that b > 0; we will treat the special case b = 0 below. The general pattern when
x0 > ix will follow from the next three claims:

Claim 4.7. There is an n0 such that ρ(12n0+1) ≥ ρ(12n0−102).

Proof:
The map f1 contracts to r1, which is greater than r0. Therefore ρ(12n+1) ≥ r0 for some n. If that
is the case, then either ρ(12n−1) ≤ r0 and so is ρ(12n−102), or if ρ(12n−1) ≥ r0, then appending 02

to 12n−1 decreases the probability towards r0 while appending 12 increases it towards r1. ⊓⊔

From now on, take n0 to be the least value as in the previous claim. If x0 > ix, then 0 is 1-maximal,
and it follows that n0 ≥ 1. If ρ(12n0+1) = ρ(12n0−102), then both are minimal, so no further strings
will be witnessed as there are no longer unique minima or maxima of any greater length. Hence
without loss of generality assume the inequality is strict. The second and third claims will apply to
the case n0 > 1; the case n0 = 1 is handled separately afterwards.

Claim 4.8. If n0 > 1, then for all 1 ≤ ℓ ≤ n0, we have:

24 K. Gill / Probabilistic automatic complexity

r0 r1 ix

f0

f1

(a) Both maps decrease ix, i.e., (ix, iy)
lies below the line y = x

ix r1 r0

f0

f1

(b) Both maps increase ix, i.e., (ix, iy)
lies above the line y = x

Figure 5: Subcases for f0 with positive and f1 with negative slope (Case 4)

(α) ρ(12ℓ) is 2ℓ-maximal,

(β) ρ(12ℓ−10) is 2ℓ-minimal,

(γ) ρ(12ℓ−101) is (2ℓ+ 1)-maximal, and

(δ) if ℓ < n0, then ρ(12ℓ+1) is (2ℓ+ 1)-minimal.

Proof:
By induction on ℓ. For ℓ = 1, because ρ(0) > ρ(1), the only possible 2-maxima are ρ(00) and ρ(11).
If we have ρ(11) < ρ(00), then because f1x < f1y iff x > y for any x, y, also f3

1x0 > f1f
2
0x0. But

from f0f1 < f1f0 it follows that f1f2
0x0 > f0f1f0x0 > f2

0 f1x0 = ρ(102), as f0x < f0y iff x < y
for any x, y. (The latter is due to f0 having positive slope.) Therefore ρ(13) > ρ(102), or in other
words n0 = 1. Since we are assuming n0 > 1, this is a contradiction, hence ρ(00) < ρ(11) and the
latter is 2-maximal, which establishes the base case of (α).

Next, because f1f0 > f0f1, we have ρ(01) > ρ(10). The latter is less than ρ(00): ρ(1) < ρ(0), so
if ρ(1) < r0 then ρ(10) < r0 < ρ(00). If ρ(1) ≥ r0, then appending a 0 moves ρ(10) closer to r0
than ρ(00) is, i.e., makes it smaller than ρ(00). This implies (β) holds for ℓ = 1. Then (γ) follows
if (α) and (β) hold for any ℓ: the only possible candidates for a (2ℓ + 1)-maximum are ρ(12ℓ0)
and ρ(12ℓ−101), i.e., the image of the 2ℓ-maximum under f0 and the image of the 2ℓ-minimum
under f1. But ρ(12ℓ0) < ρ(12ℓ−101) since f0f1 < f1f0. For (δ), suppose (α) and (β) are true
for ℓ and ℓ < n0. Then only ρ(12ℓ−102) or ρ(12ℓ+1) could possibly be minima, since they are the
images of the 2ℓ-minimum under f0 and the 2ℓ-maximum under f1, respectively. And we have
ρ(12ℓ+1) < ρ(12ℓ−102) because ℓ < n0.

Now suppose all four items hold for some given ℓ < n0. Then if (α) and (β) hold for ℓ + 1, so
does (γ) by the above argument, and if ℓ + 1 < n0 then additionally (δ) holds for ℓ + 1. Hence,

K. Gill / Probabilistic automatic complexity 25

for the inductive step, it only remains to establish that (α) and (β) hold for ℓ+ 1. For (α), because
a (2ℓ+ 2)-maximum is either the image under f1 of a (2ℓ+ 1)-minimum or the image under f0 of
a (2ℓ + 1)-maximum, the only possible (2ℓ + 2)-maxima are ρ(12ℓ+11) and ρ(12ℓ−1010). But we
have ρ(12ℓ−1010) < ρ(12ℓ−1001) because f0f1 < f1f0, so ρ(12ℓ−1010) is not maximal. Finally,
for (β), ρ(12ℓ+10) is (2ℓ+ 2)-minimal because the only other possible candidate for a minimum is
ρ(12ℓ−1011), and ρ(12ℓ+10) is less than ρ(12ℓ−1011). The latter follows by Lemma 4.5, as ix > iy if
and only if f0f2

1 < f2
1 f0, so that appending 110 always results in a lower probability than appending

011 to the same string. ⊓⊔

Claim 4.9. If n0 > 1, then ρ(12n0−10m) is (2n0 − 1 + m)-minimal, and hence ρ(12n0−10m1) is
(2n0 +m)-maximal, for all m ≥ 0.

Proof:
The cases m = 0 and m = 1 are covered by taking ℓ = n0 − 1 and ℓ = n0 in the previous
claim. If ρ(12n0−10m) is (2n0− 1+m)-minimal, and ρ(12n0−10m−11) is (2n0− 1+m)-maximal,
then only ρ(12n0−10m0) or ρ(12n0−10m−111) could be (2n0 + m)-minimal. But f0f2

1 < f2
1 f0

implies ρ(12n0−10m−2110) < ρ(12n0−10m−111), so the latter is not minimal. Finally, this implies
ρ(12n0−10m+11) is (2n0 + m + 1)-maximal: the only other possibility is ρ(12n0−10m−110), and
this is less than ρ(12n0−10m+11) because f0f1 < f1f0. ⊓⊔

Now suppose n0 = 1. We saw in the proof of Claim 4.8 above that ρ(11) < ρ(00) implies n0 = 1,
but a priori both ρ(11) < ρ(00) and ρ(00) < ρ(11) are possible when n0 = 1. Note that ρ(10) is
always minimal, however. The possible 3-minima are ρ(13) (if ρ(11) is maximal), ρ(021) (if ρ(00)
is maximal), and ρ(102) (in either case). But ρ(13) > ρ(120) by n0 = 1 and ρ(021) > ρ(102)
because f1f

2
0 > f2

0 f1, as observed in the base case of Claim 4.8. Hence ρ(102) is always the 3-
minimum when n0 = 1. We now split into two final subcases to finish the argument when x0 > ix
and n0 = 1. First, assume ρ(00) < ρ(11), so ρ(11) is maximal. For any m ≥ 2, if ρ(10m−11)
is maximal and ρ(10m) is minimal, the next maximum is ρ(10m1) since the other possibility is
ρ(10m−110), which is of the form f0f1y for some y, and f0f1y < f1f0y. And in this case the next
minimum is ρ(10m+1), because the other option is ρ(10m−112), which is of the form f2

1 f0y hence
greater than f0f

2
1 y. So by induction ρ(10m1) is witnessed for all m if ρ(11) is maximal.

The remaining subcase of x0 > ix is n0 = 1 and ρ(11) < ρ(00). In general, it may be that ρ(0ℓ−1)
is maximal for finitely many ℓ ≥ 3, but this cannot be the case for all ℓ (as we assume b < 1)
because ρ(0ℓ) decreases to r0 as ℓ increases, while some probabilities of every length will be greater
than r1. Suppose ρ(0ℓ−1) is maximal and (by induction) ρ(10ℓ−2) is minimal, for ℓ ≥ 3. Then
either ρ(0ℓ) or ρ(10ℓ−21) is ℓ-maximal, and ρ(10ℓ−1) is always ℓ-minimal (by the same argument
as in the last paragraph). If ρ(10ℓ−21) is maximal, then the argument in Claim 4.9 takes over from
length ℓ+ 1 onwards. If ρ(0ℓ) is maximal, then ρ(10ℓ) is (ℓ+ 1)-minimal because the other option
is ρ(0ℓ1) > ρ(0ℓ−110). The argument then repeats for ℓ+ 1, and so on, meaning we witness 0ℓ for
finitely many ℓ and then 10m1 for all large enough m.

This completes the argument when x0 > ix. If instead x0 < ix, then something similar happens, but
with even-odd parities switched. We state without detailed proofs the three claims (corresponding

26 K. Gill / Probabilistic automatic complexity

to those above) that will finish the argument here, as their proofs follow in the same way mutatis
mutandis. First, there is a least n0 such that ρ(12n0+2) > ρ(12n002). The case n0 = 0 is separate
and exactly analogous to the case n0 = 1 when x0 > ix: if n0 = 0 then ρ(11) > ρ(00), so ρ(00) is
minimal, ρ(01) is maximal, and in general we have 0m minimal and 0m−11 maximal for all m ≥ 2.
So assume n0 > 0 from now on.

The second claim is that when n0 > 0 and x0 < ix, for all 1 ≤ ℓ ≤ n0, ρ(12ℓ−201) is 2ℓ-maximal;
ρ(12ℓ) is 2ℓ-minimal; ρ(12ℓ+1) is (2ℓ + 1)-maximal; and ρ(12ℓ0) is (2ℓ + 1)-minimal. Both the
base case and the inductive step work very similarly as before (here, ρ(11) being minimal relies on
n0 > 0). The only possible (2ℓ+2)-maxima are ρ(12ℓ01) and ρ(12ℓ+10); the only possible (2ℓ+2)-
minima are ρ(12ℓ+2) and ρ(12ℓ02); the only possible (2ℓ+ 3)-maxima are ρ(12ℓ+3) and ρ(12ℓ010);
and the only possible (2ℓ + 3)-minima are ρ(12ℓ+20) and ρ(12ℓ−2012). All the alternatives listed
can be dispensed with using f0f1 < f1f0, f0f2

1 < f2
1 f0, and ℓ < n0. (The latter is only needed to

show the claim holds for ℓ+ 1 given it holds for ℓ, and so it does hold for ℓ = n0 as stated.)

The third and last claim needed is that when n0 > 0 and x0 < ix, for all m ≥ 1, we have ρ(12n00m)
minimal and ρ(12n00m−11) maximal. The case m = 1 follows by taking ℓ = n0 in the previous
claim. The inductive step is again very similar to Claim 4.9 for x0 > ix, since the other possible
minimum is ρ(12n00m−112), which is of the form f2

1 f0y and hence not minimal since it is greater
than f0f

2
1 y. The other possible maximum is ρ(12n00m−110), of the form f0f1y, which is less than

f1f0y and hence not maximal.

To finish the argument for Case 4(a), we dispense with the special case when b = 0, i.e., when f0
is constant. (The subcase where instead f1 is constant was dealt with in Case 2.) Here r0 = a, and
ρ(w⌢01) = f1a for all strings w. If x0 > ix, then proceeding as above, we see that after applying f1
some number of times, if n is least such that ρ(12n+1) ≥ a, then it is not possible for the probability
of any string with length greater than 2n to exceed f1a. This means that maximal probabilities cease
to be unique at length 2n+1, and only finitely many strings can be witnessed. The same holds when
x0 < ix, but now the maxima cease to be unique after ρ(12n) ≥ a.

Strings witnessed in the above case: 12n−10m1, 12n0m1, 0m, 0m1.

(b) Both f0 and f1 increase ix. This is equivalent to f0f1x > f1f0x for all x, so that appending 10
always gives a higher probability than appending 01. It is also equivalent to f0f

2
1x > f2

1 f0x for
all x (see Lemma 4.5). As before, we put off the special case b = 0 for later, and assume for the
moment that b > 0.

First, say that x0 < ix. Here we need to split into slightly different subcases than we did in (a). Since
ρ(0) < ρ(1), the 2-maximum is always ρ(10) because the only other option is ρ(01) < ρ(10). The
possible 2-minima are ρ(00) and ρ(11), and both ρ(00) < ρ(11) and ρ(11) < ρ(00) are possible.
Suppose first that ρ(00) < ρ(11). It may be that ρ(0ℓ) is minimal for finitely many ℓ, but eventually
this is no longer the case since ρ(0ℓ) increases to r0 while some other probabilities always stay
below r1. Suppose that for some ℓ ≥ 2, ρ(0ℓ) is minimal and ρ(10ℓ−1) is maximal. The possible
(ℓ+ 1)-maxima are ρ(10ℓ) and ρ(0ℓ1), but the latter is of the form f1f0y for some y, which is less
than f0f1y and so not maximal. The possible (ℓ + 1)-minima are ρ(0ℓ+1) and ρ(10ℓ−11). Either
may be the case in general, and if ρ(0ℓ+1) is minimal then the argument repeats for length ℓ + 1:

K. Gill / Probabilistic automatic complexity 27

now ρ(10ℓ) is maximal. For large enough ℓ, that is no longer the case, and for such an ℓ we have
ρ(10ℓ−1) maximal and ρ(10ℓ−21) minimal. Once that happens, the (ℓ+1)-maximum is ρ(10ℓ) since
ρ(10ℓ−212) is of the form f2

1 f0y for some y, which is less than f0f
2
1 y. The (ℓ + 1)-minimum is

ρ(10ℓ−11) since the other option is ρ(10ℓ−210), which is of the form f0f1y, and this is greater than
f1f0y. It follows by induction that we witness 10m for all m ≥ 0 in this case.

For the rest of the argument for x0 < ix, we assume instead that ρ(11) < ρ(00). The argument
follows from a series of three claims, much like in part (a). First, there is a least n0 such that
ρ(12n0−102) > ρ(12n0+1). Then n0 ≥ 1. The case n0 = 1 requires special treatment, which
we outline before proceeding further. We have ρ(11) minimal and ρ(10) maximal. Since ρ(13) <
ρ(102) when n0 = 1, the 3-maximum is ρ(102), and the 3-minimum is ρ(101) because the other
option ρ(120) is greater than ρ(012). Inductively, if for m ≥ 2 we have ρ(10m) maximal and
ρ(10m−11) minimal, then the (m+ 2)-maximum is ρ(10m+1) since the other option, ρ(10m−112),
is of the form f2

1 f0y, which is less than f0f
2
1 y and so not maximal. And the (m + 2)-minimum is

ρ(10m1) since the other option is ρ(10m−110), which is of the form f0f1y, which is greater than
f1f0y and so not minimal. It follows that we witness 10m for all m ≥ 0 in this subcase.

Now assume n0 > 1 as well as ρ(11) < ρ(00). The second claim to complete the proof is that
for any 1 ≤ ℓ ≤ n0, we have that ρ(12ℓ−10) is 2ℓ-maximal; ρ(12ℓ) is 2ℓ-minimal; if ℓ < n0, then
ρ(12ℓ+1) is (2ℓ + 1)-maximal; and ρ(12ℓ−101) is (2ℓ + 1)-minimal. The induction argument goes
exactly as in Claim 4.8 from case (a) where x0 > ix, except switching the roles of “maximal”
and “minimal” everywhere as well as switching the roles of (firstly) f0f1 and f1f0, and (secondly)
f0f

2
1 and f2

1 f0. This is because we now have f1f0 < f0f1 and f2
1 f0 < f0f

2
1 by Lemma 4.5. The

third claim, which completes the picture, is that ρ(12n0−10m) is maximal and ρ(12n0−10m−11) is
minimal for all m ≥ 0. The cases m = 0 and m = 1 follow from taking ℓ = n0 − 1 and ℓ = n0 in
the second claim. For m = 2, the (2n0 + 1)-minimum is ρ(12n0−101) by the second claim again,
and the (2n0 + 1)-maximum is ρ(12n0−102) because the other option is ρ(12n0+1), and this is the
lesser value by definition of n0. The induction can be carried out from here using f2

1 f0 < f0f
2
1 and

f1f0 < f0f1, finishing the proof for x0 < ix.

Now suppose x0 > ix. The proof of this case is split into three claims, as usual. First, there is a least
n0 such that ρ(12n0+2) ≤ ρ(12n002). As before, we first need to consider the case n0 = 0 separately,
but fortunately this is equivalent to ρ(11) < ρ(00) so there is no need for a third subcase as with
the x0 < ix argument. If n0 = 0, then ρ(00) is maximal since ρ(1) < ρ(0), and ρ(01) is minimal
by f1f0 < f0f1. In general, suppose for any m ≥ 2 that ρ(0m) is m-maximal and ρ(0m−11) is
m-minimal. Then ρ(0m+1) is (m + 1)-maximal since the other option is ρ(0m−112), which is of
the form f2

1 f0y, which is less than f0f
2
1 y and so not maximal. And ρ(0m1) is (m + 1)-minimal

since the other option ρ(0m−110) is of the form f0f1y, which is greater than f1f0y and hence not
minimal. It follows by induction that 0m is witnessed in this subcase for all m ≥ 1.

Assume from now on that instead n0 > 0. The second claim we need to finish the proof is that for
1 ≤ ℓ ≤ n0, ρ(12ℓ) is 2ℓ-maximal; ρ(12ℓ−201) is 2ℓ-minimal; ρ(12ℓ0) is (2ℓ + 1)-maximal; and
ρ(12ℓ+1) is (2ℓ+ 1)-minimal. The base case here uses n0 > 0 to show ρ(11) is maximal. The third
claim is that ρ(12n00m) is maximal and ρ(12n00m−11) is minimal for all m ≥ 2. Here, for m = 2,
we have ρ(12n002) maximal since by definition of n0, ρ(12n0+2) cannot be. And f0f1 > f1f0

28 K. Gill / Probabilistic automatic complexity

implies that ρ(12n001) is minimal rather than ρ(12n0+10). The inductive steps of both claims can
be shown in a straightforward way using f1f0 < f0f1, f2

1 f0 < f0f
2
1 , and in the first statement of

the second claim, ℓ < n0. (The latter is used only to show the second claim holds for ℓ+ 1 given it
holds for ℓ, so it does hold for ℓ = n0 as stated.)

Finally, suppose b = 0. As in Case 4(a), only finitely many strings can be witnessed. We have
again that r0 = a and ρ(w⌢01) = f1a for all strings w. If x0 < ix, and n is large enough that
ρ(12n+1) ≤ a, then no longer string can have probability greater than f1a, and this value is never
attained uniquely. If x0 > ix, and n is large enough that ρ(12n) ≤ a, the same conclusion holds.
Therefore at most finitely many constant strings can be witnessed, and nothing else. This completes
the proof of Case 4(b) and of Theorem 4.2.

Strings witnessed in the above case: 12n−10m, 12n0m.
This proof establishes that for any two-state PFA over a binary alphabet, there is a certain family

of strings which must receive maximal probabilities, and goes on to characterize this family. It could
be that other strings also receive maximal probabilities, of course; in that case the PFA would not
witness the complexity of any string of those lengths. As an aside before continuing to a proof of the
other direction of Theorem 4.1, we can undertake an analysis of the above proof to characterize the
set of strings with uniquely maximal probabilities:

Proposition 4.10. Let M be a two-state PFA reading from the alphabet {0, 1}, and assume that M
witnesses an upper bound for the PFA complexity of infinitely many strings. Then exactly one of the
following is true:

(i) M witnesses an upper bound for the PFA complexity of a string of every length. The set of
strings witnessed is exactly the set of prefixes of the infinite string injN, where n ≥ 0 is fixed
and i, j ∈ {0, 1}.

(ii) M witnesses an upper bound for the PFA complexity of strings of cofinitely many lengths. The
set of sufficiently long strings witnessed is exactly in{j}∗im for some fixed n ≥ 0 and m ≤ 1.

(iii) M witnesses an upper bound for the PFA complexity of strings of every even length, every odd
length, or both. Either

• When infinite, the sets of even- and odd-length strings witnessed are, respectively, the set
of odd-length prefixes of i2n0j(ij)N and the set of even-length prefixes of j2n1(ij)N, for
n0, n1, i, j fixed; or

• Similarly but with the sets of odd-length prefixes of i2n0+1(ji)N and even-length prefixes of
j2n1+1i(ji)N; or

• Similarly but with the sets of odd-length prefixes of iN and even-length prefixes of jN.

Proof:
Suppose M corresponds to the IFS specified by maps f0 = a + bx and f1 = c + dx together with
the starting value x0. Assume without loss of generality that a ≤ c. If x0 = ix, then ρ(0) = ρ(1),

K. Gill / Probabilistic automatic complexity 29

so no maxima of any length are unique, and so we can take x0 ̸= ix throughout. First suppose that
M falls under Case 1 in the proof of Theorem 4.2, i.e., f0 and f1 do not intersect in (0, 1). If f1 has
nonnegative slope, then 1m is uniquely maximal for all m, which follows immediately from the facts
that f0 < f1 in (0, 1) and that x ≤ y iff f1x ≤ f1y. Thus M satisfies outcome (i). If f1 has negative
slope and f0 has positive slope, then the proof of Theorem 4.2 in Case 1 already shows that ρ(0m1) is
the only possible maximum for each m, and so M satisfies outcome (ii). If both maps have negative
slope, then (01)m and 1(01)m are always maximal as discussed in the proof of Case 1. Hence M turns
out to satisfy the first bullet point under outcome (iii); the argument is the same as that used below
under the assumption that M is instead in Case 3.

Before examining the other main subcases of the proof of Theorem 4.2, we address what happens
when f0 and f1 commute. This was not investigated in the proof of Theorem 4.2, since it implies
that only constant strings can be uniquely maximal, and so we treat it separately now. Recall from
Lemma 4.5 that f0 and f1 commuting means that f0, f1, and the line y = x intersect at the same
point, i.e., at r0 = r1 = ix. (In particular, f0 and f1 must intersect.) If a = c, this forces the lines
to coincide, in which case there are no unique maxima at all. Then assume a < c. If both maps have
nonnegative slope, either ρ(0m) is uniquely maximal for all m or ρ(1m) is, depending on whether
x0 > ix or x0 < ix, and we are in outcome (i). If both maps have negative slope and x0 > ix, then
ρ(02m+1) and ρ(12m) are maximal for all m, so we are in the third bullet point under outcome (iii).
This follows by the same argument used below when M is assumed to be in Case 3 of the proof of
Theorem 4.2. If x0 < ix then the same is true switching the roles of 0 and 1.

Suppose f0 and f1 commute, f0 has positive slope, and f1 has negative slope.

• If x0 > ix, then ρ(02m+1) is uniquely maximal for all m, because the only other options for maxima
of odd lengths are not constant. Among even-length strings, either ρ(02m) is maximal for all m or
ρ(12m) is. This is because both maps converge to the same point ix under iteration, and the distance
of ρ(02m) to ix versus ρ(12m) is dictated entirely by the absolute values of the slopes of f0 and f1.
Hence if (say) f0 converges more slowly to ix than f1 does, then ρ(02m) will always be higher than
ρ(12m) for every m. So M must fall under the third bullet in outcome (iii).

• If instead x0 < ix, then there are no unique maxima of any even length, since the only way to
get a value above ix is with a nonconstant string: any string with an even number of 1s will have
probability less than ix, and ρ(0m) < ix. Among odd lengths, ρ(12m+1) must be maximal for all
m (it is greater than ix while ρ(02m+1) is not). If ρ(12m+1) fails to be uniquely maximal for any
m, then it also fails to be unique for every subsequent m since these values all lie in the same orbit.
Hence M again falls under the third bullet in (iii).

Assume for the rest of this proof that f0 and f1 do not commute and in particular that Assump-
tion 4.6 holds, so that M falls under one of Case 2, Case 3, and Case 4 in the proof of Theorem 4.2.
In Case 2, there is a number n such that either the orbit of ρ(0n1m) consists entirely of maximal prob-
abilities for each m ≥ 0, or such that the orbit of ρ(1n0m) does. Suppose ρ(0n1m) is maximal for all
m and that for some ℓ there are two strings u and w of length ℓ sharing the maximal probability. Then
also ρ(u⌢0ℓ−n1m) = ρ(w⌢0ℓ−n1m) is maximal for all m if ℓ < n, or else ρ(u⌢1m) = ρ(w⌢1m) is
maximal for all m if ℓ ≥ n. Either way, once uniqueness of maxima is lost once, it is lost forever, and
so outcome (i) holds. The same argument goes through switching 0 and 1 everywhere.

30 K. Gill / Probabilistic automatic complexity

Suppose instead M is in Case 3 of the proof of Theorem 4.2. All maxima of odd lengths and
minima of even lengths are contained in the same orbit, and all maxima of even lengths and minima
of odd lengths are also contained in the same orbit. (This is true in every subcase of Case 3.) In either
of these orbits, if uniqueness of either maxima or minima is lost at any time, then uniqueness of all
subsequent maxima and minima is also lost. The proof of Theorem 4.2 in Case 3 then implies that
one of the first two bullet points in (iii) holds if there are infinitely many unique maxima. The precise
descriptions of the sets of strings witnessed can be gleaned from the four possible subcases of Case 3,
namely 3(a) and 3(b) with each being split into further subcases based on whether x0 > ix or x0 < ix.

Finally, let M instead be in Case 4, with f0 having positive and f1 negative slope. Through
an inspection of that part of the proof, it can be seen that in every one of its many subcases, for
all sufficiently long strings, there is some fixed n such that either ρ(1n0m) is maximal for all m,
or ρ(1n0m) is minimal and ρ(1n0m1) is maximal for all m, or one of these holds swapping 0 with
1. Either way, there is an orbit which eventually consists entirely of maxima, or which eventually
consists entirely of minima whose images under f1 are maximal. We must be careful to include the
word “eventually” here because of the corner cases where finitely many strings of the form 0ℓ are
maximal or minimal before the main pattern settles in. This can happen in Case 4(a) when x0 > ix,
n0 = 1, and ρ(11) < ρ(00), and in Case 4(b) when x0 < ix and ρ(00) < ρ(11). In the latter situation,
the presence of these irregular minima does not change the fact that ρ(10m) is maximal for all m ≥ 0
(the constant prefix must have length 1 here). For the sake of convenience, we will argue below as if
the “0ℓ” subcase does not happen, with the understanding that even if it does, the argument still works
for all long enough strings. We will show that M must satisfy outcome (ii), and the latter allows for
finitely many exceptions to the overall pattern.

Suppose we have an orbit eventually consisting entirely of maxima. If there is a second (n + ℓ)-
maximal string w for some ℓ > 0, then ρ(w⌢0m) = ρ(1n0ℓ+m) is also maximal for all m ≥ 0, and so
only finitely many strings have uniquely maximal probabilities, a contradiction.

Now assume we instead have an orbit eventually composed of minima x with f1x maximal. (Note
this implies we must specifically be in Case 4(a) of the proof of Theorem 4.2.) This subcase splits into
further subcases:

• There is a second (n + ℓ)-minimal string w for some ℓ > 0. Then ρ(w⌢0m) = ρ(1n0ℓ+m) is also
minimal for all m ≥ 0, meaning that (n + ℓ +m + 1)-maxima are not unique. Thus only finitely
many strings have uniquely maximal probabilities, which rules out this possibility.

• All minima in this orbit remain unique but there are nonunique maxima of infinitely many lengths.
Let w be a string not of the form 1n0m1 such that ρ(w) is (n + ℓ + 1)-maximal for some ℓ > 1.
Since we ignore the possibility that w = 0n+ℓ+1, as mentioned above, we have ρ(w) = ρ(1n0ℓ1).
(Otherwise the argument resumes starting at length m for some m large enough so that 0m is not
maximal.)

– If w = y⌢1 for some y, then ρ(y) is an (n+ ℓ)-minimum distinct from ρ(1n0ℓ), and that means
ρ(y⌢0m) is also minimal for all m. Thus there are only finitely many unique maxima, so this
subcase is also ruled out.

– If w = y⌢0, then ρ(y) is also (n + ℓ)-maximal while y is not of the form 1n0m1: it cannot be,

K. Gill / Probabilistic automatic complexity 31

because if it were, then ρ(w) would not be maximal since ρ(w) = ρ(1n0m10) < ρ(1n0m+11) by
the fact that f0f1 < f1f0. The latter holds by Lemma 4.5 as we are in Case 4(a).
If y ends with a 1, then y ↾ (n + ℓ − 1) has minimal probability but is not of the form 1n0m, so
maxima cease to be unique after length n+ℓ, a contradiction. If y ends with a 0, then y ↾(n+ℓ−1)
has maximal probability while not being of the form 1n0m1, for the same reason as before, and
the whole argument repeats with y ↾(n+ ℓ− 1) in place of w. It follows by induction that one of
two things happens: either there is some ℓ′ with 1 < ℓ′ < n + ℓ + 1 after which length minima
(hence maxima) are no longer unique; or, if during the induction we never reach a string y ending
with a 1, then all maxima of lengths between n and n+ ℓ+ 1 are nonunique. Since we assumed
there are infinitely many nonunique maxima, there are infinitely many strings w for which this
argument can be carried out, and so in fact there have to be cofinitely many nonunique maxima.

In each of these subcases, outcome (ii) must be the case for M if there are infinitely many unique
maxima, and we are done.

⊓⊔

4.3. Proof of Theorem 4.3

We show that for every string w listed in (22), there is an IFS (f0, f1, x0) which falls into the subcase
of the proof of Theorem 4.2 which would lead to w being witnessed. This results in a case breakdown
into the following seven subfamilies of strings, listed here with the subcases of Theorem 4.2 which
they employ. (See also Proposition 4.10 above for a summary of the possible outcomes, although it
does not distinguish between even- and odd-length prefixes. Whether the prefixes will have even or
odd length depends in part on where x0 lies relative to ix.)

• 0n1m for a given n and all m – Case 2(a) with x0 > ix, Proposition 4.11;

• 12n0m1 for a given n and all m – Case 4(a) with x0 < ix, Proposition 4.12;

• 12n−10m1 for a given n and all m – Case 4(a) with x0 > ix, Proposition 4.13;

• 12n(01)m for a given n and all m – Case 3(a) with x0 > ix, Proposition 4.14;

• 12n+1(01)m for a given n and all m – Case 3(a) with x0 < ix, Proposition 4.15;

• 12n+10(10)m for a given n and all m – Case 3(b) with x0 < ix, Proposition 4.16;

• 02n1(01)m for a given n and all m – Case 3(a) with x0 > ix, Proposition 4.17.

The proofs all follow the same basic strategy, which goes roughly as follows. Let Fn be one of the
families of strings listed above, where n corresponds to the fixed length of the constant prefix of each
member of Fn. Let f0 = a+ bx and f1 = c+dx form an IFS with starting value x0, as in Section 4.2.
Given n, derive an inequality equivalent to this IFS satisfying the condition from some subcase of
the proof of Theorem 4.2 which results in strings from Fn being witnessed. This will translate to the
requirement that x0 be chosen inside a certain interval In,a,b,c,d depending on n and the coefficients of

32 K. Gill / Probabilistic automatic complexity

the IFS. For this to be possible, we need In,a,b,c,d to overlap [0, 1], and in particular to overlap either
J = (0, ix) or J = (ix, 1) depending on whether we need x0 < ix or x0 > ix in order for strings from
Fn to have maximal probabilities. For any fixed n, a, b, c, d, it will turn out that if In,a,b,c,d ∩ J ̸= ∅
and ℓ ≤ n, then also Iℓ,a,b,c,d ∩ J ̸= ∅. Hence it suffices to show for infinitely many n that we can
find an IFS witnessing the strings Fn. To do this, for each Fn we will derive an inequality of the form
n < g(a, b, c, d), for some function g, which is equivalent to the condition that In,a,b,c,d ∩ J ̸= ∅.
Then we let a, b, c, d depend on n and show that g(a, b, c, d) is unbounded as a function of n. More
precisely, we let some e ∈ {a, b, c, d} depend on n and let the other three variables depend on e.
(Sometimes it is enough to pick suitable constant values for some of the variables.) The dependence
of e on n is never explicit and in fact we ignore n for the rest of each proof, showing instead that g
tends to ∞ as e tends to either 1 or −1 (depending on Fn). One can then pick a suitable value of e
which makes the value of g larger than any given n, so this will complete the proof—as long as we can
argue we can always get unique maxima, and as long as we make sure that a, b, c, and d can always
be chosen so that for any n the IFS remains in the correct subcase from the proof of Theorem 4.2.
The latter requirement results in something of a laundry list of conditions on a, b, c, and d that must
be met in each proof. All of these conditions must be shown to be consistent with each other as well
as with the limit condition on g. It will then follow that the members of {a, b, c, d} \ {e} can be
chosen as functions of e which meet the necessary criteria and make g increase without bound. (This
is nonconstructive, though in each case it will not be difficult to imagine how one might come up with
a suitable set of smooth functions.)

We mentioned in the last paragraph that uniqueness of maximal probabilities is not automatically
guaranteed by this approach. However, any IFS which assigns maximal probabilities to strings from
Fn can be perturbed to assign a uniquely maximal probability to any given w ∈ Fn. To see why,
suppose we have ρ(u) = ρ(w) for some u ̸= w with |u| = |w|. Replacing ρ(u) and ρ(w) with
expressions deriving from the maps of the IFS results in an equation of the form α+ βx0 = ν + ηx0,
where α, β, ν, and η are polynomials in the coefficients of the IFS. Hence α−ν = (η−β)x0. Now, in
every one of these proofs, to witness strings from Fn, we are free to choose x0 to be any value inside
some open interval. Hence if η ̸= β, we can perturb x0 as needed as needed to destroy the above
equality while maintaining the conditions for ρ(w) to be maximal. Using this new x0, ρ(w) is now
uniquely maximal. Suppose instead that η = β. Expanding these quantities in terms of the coefficients
of f0 and f1, we will have β = bkdℓ and η = bmdn for some k+ ℓ = m+n = |u| = |w|. If the values
of b and d are perturbed so as to be algebraically independent over Q, the equation xkyℓ − xmyn = 0
cannot have (b, d) as a solution and so we have β ̸= η in the new IFS. This then boils down to the
previous case in which we can change x0 to achieve unique maximality of ρ(w).

Although all seven subcases follow this outline, the particularities are different enough to warrant
separate treatments, albeit with some details omitted. One formula that will be used repeatedly is the
following: for any x and n, we have

fn
0 x = a

n−1∑
i=0

bi + bnx = a · 1− bn

1− b
+ bnx = r0(1− bn) + bnx. (41)

An analogous formula holds for fn
1 x.

K. Gill / Probabilistic automatic complexity 33

Proposition 4.11. AP (0
n1m) = 2 for all n,m ≥ 0.

Proof:
Let n ≥ 1 be given (the case n = 0 is trivial). The IFS (f0, f1, x0) witnesses the set of strings
Fn = { 0n1m : m ≥ 0 } if in Case 2(a) of the proof of Theorem 4.2 with x0 > ix, and if n is least
such that ρ(0n) < ix, i.e., fn

0 x0 < ix < fn−1
0 x0. Take f0 = bx and f1 = b/2 for any b < 1 (so

a = d = 0). Then fn
0 x0 = bnx0, and our condition becomes

bnx0 < ix < bn−1x0 or equivalently x0 ∈ J :=

(
ix

bn−1
,
ix
bn

)
. (42)

Since b < 1, we have ix/b
n > ix for all n ≥ 1. In order to be able to choose x0 to witness 0n1m for

our given n, we need ix/b
n−1 < 1, or equivalently

log ix
log b

+ 1 > n. (43)

By increasing b arbitrarily close to 1, and setting c = b/2 from b, we can make log ix/ log b larger than
any given n, so that it is possible to choose x0 ∈ (ix, 1) in order for every element of Fn to receive
maximal probability. ⊓⊔

Proposition 4.12. AP (1
2n0m1) = 2 for all n,m ≥ 0.

Proof:
Let n ≥ 1 be given (the case n = 0 is covered by the previous proposition). The IFS (f0, f1, x0)
witnesses the family of strings Fn = { 12n0m1 : m ≥ 0 } if it falls under Case 4(a) of the proof of
Theorem 4.2—that is, b > 0 > d and both maps decrease ix—if x0 < ix, and if n is least such that
ρ(12n+2) > ρ(12n02), or (in other words) such that

f2n+2
1 x0 > f2

0 f
2n
1 x0. (44)

Thinking of the left-hand side here as f2
1 f

2n
1 x0, as long as b < |d| (or really b2 < d2), this inequality

is equivalent to

a+ ab+ b2f2n
1 x0 < c+ cd+ d2f2n

1 x0 ⇐⇒ F :=
f2
0 0− f2

1 0

d2 − b2
< f2n

1 x. (45)

If n is supposed to be the least number making F < f2n
1 x0, then we would like f

2(n−1)
1 x0 < F <

f2n
1 x0. On the one hand,

f
2(n−1)
1 x0 < F ⇐⇒ r1(1− d2(n−1)) + d2(n−1)x0 < F ⇐⇒ x0 < r1 −

r1 − F

d2(n−1)
, (46)

and on the other hand

F < f2n
1 x0 ⇐⇒ x0 > r1 −

r1 − F

d2n
(47)

34 K. Gill / Probabilistic automatic complexity

by a similar calculation. Now, in our situation it will always be the case that F < r1 = c/(1 − d),
because

f2
0 0− f2

1 0

d2 − b2
<

c

1− d
⇐⇒ a(1− d+ b− bd) < c(1− b2) ⇐⇒ a

1− b
<

c

1− d
, (48)

i.e., r0 < r1. As long as we choose a, b, c, d to make r0 < r1, then, we have F < r1; and as long
as we make b < |d|, the equivalence of the inequalities in (45) holds. We also need F > 0, but this
automatically follows from the condition that f2(n−1)

1 x0 < F since the latter LHS is nonnegative for
every n ≥ 1 and x0.

Putting (46) and (47) together, the IFS witnesses Fn when we can pick x0 within the interval

J :=

(
r1 −

r1 − F

d2n
, r1 −

r1 − F

d2(n−1)

)
. (49)

If r0 < r1, then J is nonempty, since d2n < d2(n−1) and we have shown r1 − F > 0; and both
endpoints of J are less than ix, since they are less than r1, and r1 < ix iff r0 < r1 by Lemma 4.5.
Hence choosing such an x0 automatically fulfills the requirement that x0 < ix.

We also need (for a given n) to be able to pick x0 > 0, so at least the right endpoint of J should
be positive. For any n,

r1 −
r1 − F

d2(n−1)
> 0 ⇐⇒ d2(n−1) > 1− F

r1
⇐⇒ (n− 1) log d2 > log

(
1− F

r1

)
⇐⇒ n < 1 +

log(1− F/r1)

log d2
.

(50)

So for arbitrarily large n to be possible, the last RHS must be able to grow arbitrarily large depending
on a, b, c, d. To accomplish this we will treat d as a variable, presumed to depend on n, which will
decrease to −1 as n increases to infinity. Then we make c a function of d (so that F and r1 are as
well), and require that

lim
d→−1+

log(1− F/r1)

log d2
=∞. (51)

We need c to be a function of d because c must be greater than |d| for all d > −1 if we are to have
c + d > 0, so c will necessarily approach 1 in the limit. Of course we also need to make sure the
logarithm in the numerator is defined for all d > −1. If so, then together with the fact that the right
endpoint of J is always less than ix, we will have that for every n ≥ 1 there is a choice of a, b, c, d, x0
making (f0, f1, x0) witness 12n0m1 for all m.

To sum up thus far: we want to choose numbers a, b and a continuous function c(d) to satisfy
the requirements that |d| < c(d) < 1, a < 1 − b, b < |d|, r0 < r1, ix < 1, iy > 0, and the limit
condition (51) holds. This limit condition will imply that x0 can be chosen inside the interval J as
needed. Because we are taking the limit as d→ −1+, we may as well only bother asking for the other
requirements to hold in the limit, too. This simplifies things considerably: since c → 1 as d → −1,
we have r1 → 1/2. Then for r0 < r1 to hold in the limit, it is enough to make r0 = a/(1− b) < 1/2,
or in other words to pick positive constants a and b with 2a < 1 − b. This condition also guarantees

K. Gill / Probabilistic automatic complexity 35

a < 1 − b and hence a + b ∈ [0, 1], as well as that b < |d|. Furthermore, since c(d) will eventually
be greater than any fixed a < 1, a < c is satisfied in the limit. That c + d ∈ [0, 1] is automatically
implied by the requirement that |d| < c(d) < 1.

Only two conditions remain to be checked. Firstly, (51) holds if 1 − F/r1 stays strictly between
0 and 1 as d → −1+: on the one hand, 0 < 1 − F/r1 iff F < r1, which as we saw is equivalent to
r0 < r1. On the other hand, 1 − F/r1 < 1 iff both F and r1 are positive, and both of those happen
in the limit as noted above. Finally, we need to check that the lines intersect in [0, 1]2. But since
f1(x)→ 1− x as d→ −1, if we make sure to take a, b > 0, then f1 will eventually intersect any line
that stays inside [0, 1]2. Hence iy > 0 and ix < 1 hold in the limit as d→ −1+, and we are done. ⊓⊔

The proofs of all but one of the remaining cases are very similar to the above, and we will give a
somewhat more streamlined presentation from here on out. The most complicated case we save for
last (Proposition 4.17).

Proposition 4.13. AP (1
2n−10m1) = 2 for all n ≥ 1, m ≥ 0.

Proof:
If n ≥ 1 is given, then (f0, f1, x0) witnesses 12n−10m1 for all m ≥ 0 if in Case 4(a) of the proof of
Theorem 4.2 (mixed slopes) with x0 > ix and n least such that ρ(02n−102) < ρ(12n+1), or in other
words such that

f2
0 f

2n−1
1 x0 < f2n+1

1 x0. (52)

We do also need to avoid the corner case in which finitely many strings 0ℓ can receive a higher proba-
bility than those of the form 12n−10m1. As established in the proof of Case 4(a), this is only possible
when n = 1, and more specifically when ρ(11) < ρ(00). As before, we will pick a, b > 0 constants
and c a continuous function of d so that for any given n, there is a d making it possible to choose x0
so that (52) holds and so that ρ(11) > ρ(00). Taking n → ∞ will correspond to taking d → −1+.
Now, if we have that b < |d|, then (52) is equivalent to

f2n−3
1 x0 < E < f2n−1

1 x0 where E =
a(1 + b)− c(1 + d)

d2 − b2
, (53)

and the inequality in (53) is equivalent to

x0 ∈
(
r1 +

r1 − E

|d|2n−3 , r1 +
r1 − E

|d|2n−1

)
. (54)

For arbitrarily large n to be possible, we want to pick a, b, c, d so that this interval intersects (ix, 1), so
a suitable x0 can be chosen. We will see below that this can also be done so that b < |d| and the above
equivalences are legitimate. The left endpoint in (54) can be made less than 1 for arbitrarily large n if,
in particular,

lim
d→−1+

log
r1 − E

1− r1
log d2

+
3

2
=∞. (55)

36 K. Gill / Probabilistic automatic complexity

And the right endpoint in (54) is greater than ix, for a given n, iff

log
r1 − E

ix − r1
log d2

+
1

2
> n. (56)

Note that in the limit, E approaches r0 (as long as b < 1). Hence as long as r0 < r1 in the limit, then
eventually r1 > E. If we arrange things so ix stays below 1, then,

r1 − E

ix − r1
>

r1 − E

1− r1
. (57)

Also notice that we can take r1−E
ix−r1

< 1 in the limit since this is equivalent to 2r1 < ix + E, which
in the limit is guaranteed if 2a+ b < 1, as may be checked with a little algebra. Assume that a, b are
positive constants with 2a+ b < 1 and b < |d|. Since log is increasing, if (55) holds, the LHS of (56)
will also approach∞. This implies that whenever n is such that the left endpoint of (54) is less than
1, for all n′ ≤ n it is possible to choose x0 ∈ (ix, 1) in order to witness 12n

′−10m1. And the fact that
E → r0 < ix means that in the limit, any choice of x0 ∈ (ix, 1) guarantees that ρ(11) > ρ(00), and
we thus avoid the issue of finitely many strings of the form 0ℓ being witnessed instead of the desired
ones. This is because under the assumption that b < |d|, we have that ρ(11) < ρ(00) is equivalent to
x0 < E, so this case is automatically ruled out if x0 > ix.

So, let c(d) be a continuous function with |d| < c(d) < 1 for all d > −1, and let a and b be positive
constants such that 2a+ b < 1. This immediately implies a+ b, c+d ∈ [0, 1] for all d and that b < |d|
in the limit. Since r1 → 1/2 as d → −1, we have r0 < r1 in the limit since r0 = a/(1 − b) < 1/2.
We also need E > 0, which is guaranteed as d→ −1+ since E approaches r0 > 0. Since c→ 1 and
d → −1, eventually c > a as required. Because f1(x) → 1 − x as d → −1, c + dx will eventually
intersect a + bx in [0, 1]2, so that 0 < iy < ix < 1. It only remains to check (55). But we already
observed that

r1 − E

1− r1
<

r1 − E

ix − r1
< 1 (58)

as d → −1, and r1−E
1−r1

> 0 iff r1 > E, which also holds in the limit. Therefore the logarithm in the
numerator of (55) approaches a finite negative number, while log d2 approaches 0 from below. ⊓⊔

Proposition 4.14. AP (1
2n(01)m) = 2 for all n,m ≥ 0.

Proof:
For a given n, we witness 12n(01)m if in Case 3(a) of the proof of Theorem 4.2 (both slopes negative),
with x0 > ix and n least such that

f2n
1 x0 < ix. (59)

We will pick numbers a > 0, b < 0, and a continuous function c(d) so that as d → −1+, we have
a + b, c + d ∈ [0, 1], a < c, b > d, r0 < r1, and the lines a + bx and c + dx intersecting in [0, 1]2.
If a, b /∈ {0,±1}, then the last condition is automatically met as d → −1 since f1 → 1 − x and this

K. Gill / Probabilistic automatic complexity 37

intersects any line in [0, 1]2. The conditions a < c and b > d are also automatically met as d → −1.
At the same time, we must (given n) be able to pick

x0 ∈
(
r1 +

ix − r1

d2(n−1)
, r1 +

ix − r1
d2n

)
(60)

so that f2n
1 x0 < ix < f

2(n−1)
1 x0. We need this interval to intersect (ix, 1) for arbitrarily large n, for

suitable choices of a, b, c, d. That the right endpoint is always greater than ix, for any n, follows from
d2n < 1, since then ix−r1

d2n
> ix − r1. For the left endpoint to be less than 1 for arbitrarily large n we

need

lim
d→−1+

log
ix − r1
1− r1

log d2
=∞. (61)

Pick a > 0 > b with

−b < a <
1− b

2
. (62)

Also let c(d) be a continuous function with |d| < c(d) < 1 for all d > −1. This immediately gives
c + d ∈ [0, 1], and (62) implies a + b ∈ [0, 1] too. Next, since r1 → 1/2 as d → −1 and (62) makes
r0 = a/(1 − b) < 1/2, we have r0 < r1 in the limit. Finally, to satisfy (61), we want ix−r1

1−r1
to be

strictly between 0 and 1 in the limit. This quantity is automatically positive since ix > r1 and 1 > r1
(both in the limit, again). And because (62) implies ix → 1−a

b+1 < 1 as d → −1, the fraction is also
less than 1 in the limit. This completes the proof. ⊓⊔

Proposition 4.15. AP (1
2n+1(01)m) = 2 for all n,m ≥ 0.

Proof:
Given n, take the IFS to be in Case 3(a) of the proof of Theorem 4.2 (both slopes negative) with
x0 < r0 and n such that

f2n+1
1 x0 < ix < f2n−1

1 x0. (63)

This is equivalent to

x0 ∈
(
r1 −

ix − r1

|d|2n+1 , r1 −
ix − r1

|d|2n−1

)
. (64)

Since

r1 −
ix − r1

|d|2n+1 < r0 ⇐⇒ |d|2n+1 <
ix − r1
r1 − r0

(65)

and the last fraction is greater than 1 by Lemma 4.5(e) while the LHS is less than 1, we have that the
left endpoint of (64) is always less than r0 for all n ≥ 0. In order to make the right endpoint of (64)
greater than 0 for arbitrarily large n (for suitable choice of a, b, c, d), so that an x0 ∈ (0, r0) may be
chosen to make the IFS witness exactly 12n+1(01)m, we can arrange for

lim
d→−1+

log(ix/r1 − 1)

log d2
=∞. (66)

38 K. Gill / Probabilistic automatic complexity

As usual, pick constants a, b /∈ {0,±1}, a > 0 > b, and a continuous function c(d) such that
|d| < c(d) < 1 for all d > −1 (so c+ d ∈ [0, 1]). To satisfy (66), we want 0 < ix/r1 − 1 < 1 in the
limit, or equivalently r1 < ix < 2r1. Since ix converges to (1 − a)/(b + 1) and r1 → 1/2, this can
achieved (along with a+ b ∈ [0, 1]) by making −b < a < 1−b

2 . This implies that a < c and b > d are
met in the limit, and again since f1 → 1 − x we will eventually have (ix, iy) ∈ [0, 1]2. And r0 < r1
follows from r1 < ix. ⊓⊔

Proposition 4.16. AP (1
2n+10(10)m) = 2 for all n,m ≥ 0.

Proof:
For this, given n, we take the IFS to be in Case 3(b) of the proof of Theorem 4.2, so that both maps
have negative slope and increase ix. We want x0 > r0 and n to be such that

f2n−1
1 x0 < ix < f2n+1

1 x0. (67)

This is equivalent to

x0 ∈
(
r1 +

r1 − ix

|d|2n−1 , r1 +
r1 − ix

|d|2n+1

)
. (68)

Remember that in the present case we have ix < r1 < r0. We will pick a > 0 > b with

1− b

2
< a < 1, (69)

and pick c(d) a continuous function with |d| < c(d) < 1 for all d > −1. Then if we take d→ −1, we
have r1 → 1/2 and r0 > 1/2 by choice of a and b, so that r1 < r0 in the limit. Also a+b, c+d ∈ [0, 1],
a < c, and b > d hold in the limit; and as before, a + bx eventually intersects c + dx in [0, 1]2 since
c + dx → 1 − x. Now we just need to make sure we can always pick an x0 ∈ (r0, 1) for arbitrarily
large n as d→ −1. We have

r1 +
r1 − ix

|d|2n+1 > r0 ⇐⇒
r1 − ix
r0 − r1

> |d|2n+1 . (70)

Since the RHS here is less than 1 and the LHS is greater than 1 (by Lemma 4.5(e) again), this always
happens for any n. To make the left endpoint of (68) less than 1 for any given n, so that suitable
a, b, c, d, x0 may be chosen to witness the desired string, it suffices to ensure that

lim
d→−1+

log
r1 − ix
1− r1

log d2
=∞. (71)

Thus we want 0 < r1−ix
1−r1

< 1 in the limit, or equivalently 2r1 − 1 < ix < r1. Since r1 → 1/2, in the
limit the latter inequality becomes

0 <
1− a

b+ 1
<

1

2
, (72)

which is equivalent to (69). ⊓⊔

K. Gill / Probabilistic automatic complexity 39

Now we arrive at the final and most complex subcase of Theorem 4.3 to prove. The extra difficulty
arises because, basically, we will need to take both b and d to −1 while both a and c go to 1. This
makes it harder to make certain properties hold “in the limit” as in the previous subcases, and also
results in a limit condition in which the limit converges to log 0

0 . Slightly more delicate handling is
needed to get around these problems.

Proposition 4.17. AP (0
2n1(01)m) = 2 for all n,m ≥ 0.

Proof:
Let n be given. The IFS (f0, f1, x0) witnesses 02n1(01)m for all m if in Case 3(a) of the proof of
Theorem 4.2 (where both maps have negative slope and both decrease ix), when x0 > ix and when n
is least such that f2n

0 x0 < ix, i.e.,

f2n
0 x0 < ix < f

2(n−1)
0 x0, (73)

or equivalently (after rearranging)

x0 ∈
(
r0 +

ix − r0
b2n−2

, r0 +
ix − r0
b2n

)
. (74)

If we can pick a, b, c, d to make r0 < ix, then this interval is nonempty with positive endpoints. For
this n and a, b, c, d, it is possible to choose x0 to witness the desired family of strings iff (74) intersects
with (ix, 1), that is, iff the left endpoint is less than 1 and the right endpoint is greater than ix. We now
investigate when each of these conditions occurs. First,

r0 +
ix − r0
b2n

> ix ⇐⇒ 1 > b2n, (75)

which is true for all n ≥ 1, so if an x0 can be chosen above ix for a given n then a suitable x0 can also
be chosen for any n′ ≤ n. And we can choose x0 < 1 iff

r0 +
ix − r0
b2n−2

< 1 ⇐⇒ ix − r0
1− r0

< b2n−2 ⇐⇒
log

ix − r0
1− r0

log b2
+ 1 > n. (76)

This is possible to achieve for any given n if we can make

lim
b→−1+

log
ix − r0
1− r0

log b2
=∞. (77)

Altogether this means that if r0 + (ix − r0)/b
2n < 1 for some n and a fixed choice of a, b, c, d, then

it is possible for every 1 ≤ n′ ≤ n to pick a suitable value of x0 > ix making (f0, f1, x0) witness the
strings 02n

′
1(01)m for every m ≥ 0. Hence the proof will be complete if we can choose a, c, and d

as functions of b such that such that (77) holds and such that the IFS remains in Case 3(a) of the proof
of Theorem 4.2 for all b > −1. Actually, for technical reasons it will be simpler for now to choose

40 K. Gill / Probabilistic automatic complexity

r0 as a function of b and then let a(b) = (1 − b)r0(b). This is not a problem because b is never 1, so
r0(b) = a(b)/(1− b) is always well-defined. We will ultimately see that the requirements we impose
on r0(b) do not contradict the behavior of a(b).

We proceed by deriving necessary conditions on r0, c, d to satisfy each requirement, and showing
along the way that each new condition is compatible with all the preceding ones. This will imply that
functions r0, c, d satisfying all of them do indeed exist. Our first requirements, which we will take as
“atomic” in that they will not reduce to other requirements, are that

(1− b)r0(b) < 1 and |b| < |d(b)| < c(b) < 1 (78)

for all b > −1 (with b, d negative). The second of these immediately implies c + d ∈ [0, 1]. To
guarantee a+ b ∈ [0, 1], first note that a+ b = r0(1− b) + b < 1 iff r0 < 1, and this follows from the
first atomic requirement. Then a+ b > 0 iff

r0 > −b/(1− b), (79)

a new requirement. Actually, (79) will turn out to be a consequence of ix, iy ∈ [0, 1], or in other words
of f0 and f1 intersecting in [0, 1]2. We need the latter to happen anyway, so let us now find a sufficient
condition for it. Rewriting ix and iy in terms of r0 produces

ix =
c− r0(1− b)

b− d
and iy =

bc− r0(1− b)d

b− d
. (80)

If iy < ix, or equivalently r0 < r1, then it suffices to make iy > 0 and ix < 1. We will see how to
ensure r0 < r1 in a moment. One can check that

iy > 0 ⇐⇒ r0 >
bc

d(1− b)
and ix < 1 ⇐⇒ r0 >

c+ d− b

1− b
. (81)

Since c + d > 0, we have c+d−b
1−b > −b

1−b , so that satisfying (81) would automatically result in (79)
being satisfied too. Thus (79) is redundant. Next, some more algebra shows that

bc

d(1− b)
<

c+ d− b

1− b
⇐⇒ b > d, (82)

an atomic requirement. Hence the first condition in (81) is implied by the second as long as (78) holds,
so is also redundant. Then we will have a+ b > 0, iy > 0, and ix < 1 if we can choose r0 so that

c+ d− b

1− b
< r0 <

c

1− d
= r1. (83)

The latter guarantees that iy < ix so that we stay in Case 3(a) of the proof of Theorem 4.2, and also
subsumes the second condition in (81), so if (83) holds then (81) is fully redundant. Now, the interval
in (83) is nonempty because

c+ d− b

1− b
<

c

1− d
⇐⇒ (c+ d− b)(1− d) < c(1− b) ⇐⇒ (c− 1 + d)(b− d) < 0, (84)

K. Gill / Probabilistic automatic complexity 41

which follows from the second requirement in (78): b − d > 0 since b > d, and c − 1 + d < 0 since
|d| < c < 1. So (78) makes it possible to choose r0 to satisfy (83), and together (78) and (83) are
enough to ensure we stay in Case 3(a).

It remains to show that the limit requirement (77) is consistent with (78) and (83). We will take r0,
c, and d to be continuously differentiable functions of b. log b2 approaches 0 from below as b→ −1+,
so in order for the limit to reach +∞, one needs the logarithm in the numerator of (77) to stay negative.
For this, one must maintain

0 <
ix − r0
1− r0

< 1 (85)

in the limit as b → −1+, and for this quantity to stay strictly below 1 at b = −1. Now, d(b) → −1+
as b→ −1+ since d is always less than b, and c(b)→ 1. Then after some more algebra, we have that

ix − r0
1− r0

=
c− r0(1− d)

(b− d)(1− r0)
→ 0

0
as b→ −1. (86)

An application of L’Hôpital’s Rule shows that the limit is equal to

lim
b→−1+

c′ − r′0(1− d) + r0d
′

(1− r0)(1− d′)− r′0(b− d)
=

2c′(−1)− 4r′0(−1) + d′(−1)
1− d′(−1)

. (87)

(The calculation follows since r′0, c′, and d′ are bounded everywhere by assumption, and r0 → 1/2.)
Since d decreases to−1 as b decreases to−1, d′(−1) ≥ 0, and we will need d′(−1) ̸= 1 for (87) to be
well-defined. If we take 0 < d′(−1) < 1, then the denominator of the limit in (87) is positive. Hence

the limit in (77) will tend to
−∞
0−

= +∞, as needed, if

0 <
2c′(−1)− 4r′0(−1) + d′(−1)

1− d′(−1)
< 1. (88)

If L(b) = c+d−b
1−b is the lower bound in (83), then one can calculate

L′(−1) = 2c′(−1) + 2d′(−1)− 1

4
, r′0(−1) =

2a′(−1) + 1

4
,

and r′1(−1) =
2c′(−1) + d′(−1)

4
.

(89)

Using these expressions we see that (88) is equivalent to

L′(−1) < r′0(−1) < r′1(−1). (90)

Our final objective is to show (90) is consistent with the other requirements (78) and (83), which
will complete the proof since that means (77), (78), and (83) can all be satisfied simultaneously.
Actually, under the above assumption that 0 < d′(−1) < 1, and up to possibly perturbing r0, c, and d,
(90) is equivalent to (83) holding in the limit. This follows because for any continuously differentiable
functions f(x), g(x) having the same limit as x→ C+, where C is some constant, then for any ε > 0,
f(x) > g(x) on (C,C + ε) iff f ′(x) > g′(x) on (C,C + ε). Then since L, r0, and r1 all tend

42 K. Gill / Probabilistic automatic complexity

to 1/2 as b → −1, we have that (83) holding in a right neighborhood of b = −1 is equivalent to
L′ < r′0 < r′1 holding in the same neighborhood. By smoothly perturbing r0, c, and d if necessary, as
long as 0 < d′(−1) < 1 is maintained, we can ensure strict inequality between the derivatives holds
at b = −1, i.e., that (90) holds. (A bit more formally, one could say that these strict inequalities are all
open conditions in the C1 topology.) Thus (90) implies (83) holds near b = −1, and conversely, (83)
implies that r0, c, and d may be taken to satisfy (90) and hence (77). In particular, (90) and (78) are
also consistent with each other.

So to sum up, there are continuously differentiable functions r0(b), c(b), and d(b) (and conse-
quently a(b) = (1− b)r0(b)) satisfying (78), (83), and 0 < d′(−1) < 1. We have established that all
of this suffices to be able to choose, given any n, values of x0 and b which result in the IFS (f0, f1, x0)
witnessing the strings 02n1(01)m for all m ≥ 0. This finishes the proof of the final subcase of Theo-
rem 4.3, and at last the proof of Theorem 4.1 is complete. ⊓⊔

4.4. Further remarks

The proof of Theorem 4.3 appears to explicitly rely on the use of IFSs derived from PFAs reading from
a two-letter alphabet, and a priori does not extend to show that, e.g., AP (0

n1n) = 2 may be witnessed
by an IFS over {0, 1, 2}, for which another map f2 must be specified. However, if one defines f0x =
a+ bx and f1x = c+ dx as in any of the proofs in the last section, and lets fjx = a+c

2 + b+d
2 x for all

other j ∈ Σ, then fjx is strictly between f0x and f1x except at x = ix, and so a string containing a j
can have neither minimal nor maximal probability. Hence we have

Corollary 4.18. If |Σ| = 2, then AP (w,Σ) = 2 implies AP (w,Σ
′) = 2 for every Σ′ ⊃ Σ and

w ∈ Σ∗.
Theorem 4.1 immediately implies that the set of binary strings with AP = 2 is a regular language.

More particularly, Proposition 4.10 has the following consequence, which is somewhat intriguing
given that stochastic languages—which are defined by fixed probability thresholds (the cut-point)—
are not generally regular, or even recursively enumerable, although Rabin did show that a stochastic
language defined by an isolated cut-point is regular [12].

Corollary 4.19. For every two-state PFA M over a binary alphabet, the language of strings whose
complexity is witnessed by M is regular.

Proof:
The set of such strings is either finite, or is fully characterized as one of the cases in Proposition 4.10.
Each of these cases can be described by a regular expression. ⊓⊔

Another consequence of the classification is that we can save an arbitrarily high number of states
by switching from NFAs to PFAs to describe a given (binary) string:

Corollary 4.20. The quantity AN (w)−AP (w) may be arbitrarily large among binary w.

K. Gill / Probabilistic automatic complexity 43

Proof:
The statement follows if we can show AN (0n1n) is unbounded in n,3 since AP (0

n1n) = 2 for all n
by Theorem 4.1. Suppose AN (0n1n) ≤ K for all n and some constant K. For any w, AN (w) can
be witnessed by an NFA whose unique accepting path of length |w| uses every edge. Hence by the
pigeonhole principle, there is some NFA M with at most K states such that for infinitely many n,
there is a unique path of length 2n which accepts 0n1n and uses every edge of M . We show this is
impossible. First, if the digraph of M has fewer than two distinct cycles, then at most one string of the
form 0n1n is accepted. Then we can assume there are distinct cycles of lengths a and b, respectively.
For any string w accepted by M , the portion of w which was read while traversing these cycles has
length ℓ = ax + by for some x, y ∈ N. If such an ℓ is greater than 2ab − a − b, then there are at
least two different pairs of natural numbers (x, y) and (x′, y′) with ax + by = ax′ + by′ = ℓ (see,
e.g., [4, Lemma 11]). In terms of M , this means for all large enough m such that M accepts a word of
length m with a path that uses both cycles, there are at least two distinct accepting paths of length m—
corresponding to traversing the cycles x and y times on the one hand, and x′ and y′ times on the other.
In particular, the accepting path for 0n1n uses both cycles for infinitely many n such that AN (0n1n)
is witnessed by M , and so for all but finitely many of these n there are two different accepting paths
of length 2n, a contradiction. ⊓⊔

Of course, the 2-state PFA describing 0n1n may have to be somewhat complicated, a problem we
briefly return to in Section 6 below.

As remarked earlier, no evidence has yet appeared to suggest that AP is unbounded, or even that
any string has complexity greater than 3. All binary strings of length 10 or less have complexity
at most 3, and witnesses with three states have been found for a number of longer strings as well.
Therefore, we may pose the following questions, the first being restated from the introduction:

Question 1.4. Is AP unbounded? If not, what is its maximum value? Similarly when restricted to a
given finite alphabet, and similarly for AP,γ .

Question 4.21. What is a tight upper bound for AP (w) as a function of |w|?

Lastly, one may call a string random for a measure of complexity if its complexity is the maximum
possible for its length. For example, a string is random for Kolmogorov complexity if its complexity
is equal to its length, up to an additive constant not depending on the string. For AN , the string w is
random if AN (w) = ⌊|w| /2⌋ + 1, and this is known to be tight (except over a binary alphabet; see
[10, Theorem 9] and [9]). But without a general asymptotic upper bound, it is unclear what strings
could be considered random for AP , and so we ask:

Question 4.22. Is there a suitable notion of a string being random with respect to AP ? If so, then
asymptotically, how many strings are random in this sense?

3[4, Theorem 12] establishes that AD(0n1n) ≥
√
n−1 for all n, but the proof does not quite go through for NFAs. Probably

a similar explicit lower bound on AN can be found.

44 K. Gill / Probabilistic automatic complexity

5. Computability of probabilistic automatic complexity

A primary motivation for introducing the DFA and NFA complexities was that they are computable,
unlike the Kolmogorov complexity, as we mentioned earlier. Hence it is natural to ask whether the
PFA complexity AP is also computable, along with its parametrized variant AP,γ . In this section, we
give a strong positive answer to this question by establishing the following:

Theorem 5.1. For every finite alphabet Σ and every γ ∈ [0, 1), the function w 7→ AP,γ(w,Σ) is
γ-computable.

That is, there is an oracle Turing machine which can compute the value of AP,γ(w,Σ) when given
input w and an oracle encoding the number γ. This theorem is really two theorems in one, and to prove
them we will need to study the computability of AP,γ from two different points of view. The difference
centers on how the number γ is represented, and what is more specifically meant by “γ-computable”
depends on that representation. If γ is algebraic and one has a finitary description of it as the root
of some polynomial with integer coefficients, then Tarski’s classical theorem on the decidability of
real closed fields can be applied to show that there is an algorithm computing AP,γ as a function
from Σ∗ to N (Theorem 5.2). If γ is arbitrary, one can instead represent γ as a rapidly converging
sequence of rational numbers and view AP,γ(w) as a function both of w and of such a sequence, i.e.,
as a function from [0, 1) × Σ∗ to N. This function is not everywhere continuous, and so cannot be
computable—but we show in Theorem 5.3 that it is computable where continuous, except possibly
at γ = 0, by a uniform algorithm which works for any point in its domain of continuity (aside from
those with γ = 0). To achieve this, we topologize the space of k-state PFAs for each k and argue about
the computability of certain real-valued quantities defined using that space (in particular (97)). Then
the proof of Theorem 5.1 is completed by showing that all γ at which this two-variable function is
discontinuous are definable in the language of real closed fields, so that Theorem 5.2 applies to them.

We will assume Σ to be fixed in advance for the rest of this section, and moreover that |Σ| > 1
(since the statement of Theorem 5.1 becomes trivial otherwise: the complexity of every string would
be 1).

5.1. Computability for definable γ

The proof of the following theorem was suggested to the author by Bjørn Kjos-Hanssen.

Theorem 5.2. The function w 7→ AP,γ(w) is computable whenever γ is first-order definable in the
language L of real closed fields.

This L consists of constant symbols 0 and 1 together with a binary relation symbol < and binary
function symbols +, −, and ·. The precise definition of a real closed field is not relevant for our
purposes and may be found, e.g., in [25, §3.3]. The important point for us is that (R; 0, 1,+,−, ·, <)
is a real closed field with these symbols being given their usual meaning. Tarski proved that the first-
order theory of real closed fields is decidable, i.e., there is an algorithm which decides from a given L-
sentence whether the theory of real closed fields proves that sentence [25, Corollary 3.3.16]. Tarski’s
theorem implies that to prove Theorem 5.2, it suffices to show that for a given k, w, and definable

K. Gill / Probabilistic automatic complexity 45

number γ, the relation AP,γ(w) ≤ k is equivalent to an L-sentence, and that (a Gödel number for)
such a sentence can be uniformly computed from k and w if one is given a formula defining γ. The
proof is uniform in (a Gödel number for) the formula defining γ as well. (Note that by quantifier
elimination, the L-definable numbers are exactly the algebraic numbers.)

Proof:
In what follows, tuples ā and b̄ will always be elements of Rk(bk+2) where |Σ| = b is fixed. For each
k, define

ispfak(ā) ≡
k(bk+2)∧

i=1

(0 ≤ ai ≤ 1) ∧
bk+1∧
n=1

 (n+1)k∑
j=nk+1

aj = 1

 ∧ k(bk+2)∧
i=k(bk+1)+1

(ai = 0 ∨ ai = 1). (91)

In words, this means that ā can be split into bk + 1 stochastic vectors followed by a 0-1 vector, all
of length k. If M is the PFA defined by the tuple x̄, write pw(x̄) for ρM (w); this is a polynomial in
the entries of x̄ and hence an L-term which can be uniformly computed from w. Next, given w, write
Σ|w| \ {w} as {w1, . . . , wn} (with n depending on w and each word appearing only once). Let

isgapk,w(g, ā) ≡
n∨

i=1

(pw(ā)− pwi(ā) = g) ∧
∧
j ̸=i

(
pw(ā)− pwj (ā) ≥ g

) . (92)

Thus isgapk,w(g, ā) holds if and only if gapM (w) = g where M is the k-state PFA defined by ā. It is
clear that one can uniformly compute the L-formulas ispfak(ā) and isgapk,w(g, ā) from k and w. If γ
is defined by the formula φ(x) (which may have extra parameters), then AP,γ(w) ≤ k if and only if

∃ā∃g1∃g2
(
ispfak(ā) ∧ isgapk,w(g1, ā) ∧ φ(g2) ∧ (g1 > g2)

)
. (93)

This completes the proof of Theorem 5.2. ⊓⊔

5.2. Computability for arbitrary γ

We now switch our approach, as mentioned earlier, in order to speak meaningfully of the computability
of AP,γ for arbitrary γ. Recall that we now view AP,γ(w) as a two-variable function of both w and γ,
where γ is represented by any sequence of rational numbers rapidly converging to it (a Cauchy name,
formally defined below). This subsection is devoted to proving the following:

Theorem 5.3. For any finite Σ, the function from [0, 1)× Σ∗ to N given by (γ,w) 7→ AP,γ(w,Σ) is

• Continuous everywhere on [0, 1)×Σ∗ except on a countably infinite set enumerable by a single
algorithm;

• Computable on (0, 1)× Σ∗ where it is continuous.

46 K. Gill / Probabilistic automatic complexity

In particular, for every w and Σ, AP,γ(w,Σ) is computable for all but at most AD(w)−2 many values
of γ, and is continuous at γ = 0.

The reader should note that the theorem makes no claim one way or the other as to the computabil-
ity of this function at γ = 0. While AP,0 = AP is computable by Theorem 5.2, the number 0 in the
present context is specified by a Cauchy name rather than being defined by a finitary formula, and the
proof of Theorem 5.3 does not extend to this case. Then we may ask

Question 5.4. Is the set {0} × Σ∗ contained within the domain of computability of the function
(γ,w) 7→ AP,γ(w)?

To prove the theorem we need some machinery from computable analysis, and we introduce the
needed background in the next subsection before proceeding to the proof. Afterwards in Section 5.3,
we show that Theorem 5.2 can be used to compute AP,γ at every one of its discontinuities, which
completes the proof of Theorem 5.1.

5.2.1. Background in computable analysis

Our approach is standard and can be found in, e.g., [26]. For a separable metric space (X, d), suppose
we are given an enumeration α : N→ X of a dense subset of X . Fix some enumeration (qi)i∈N of Q.
Then we say X is a computable metric space if d : X ×X → R is computable when restricted to the
range of α, in the sense that the set

{ (i, j, n,m) ∈ N4 :qi < d(α(n), α(m)) < qj } (94)

is computably enumerable. The function α gives rise to a canonical computable enumeration of a
basis for the topology on X , namely

⟨i, j⟩ 7→ Bqj (α(i)), (95)

where Bq(x) is the open ball of radius q centered at x ∈ X . We will from now on refer to the sets in
this canonical enumeration as basic open balls. We may refer to a procedure as “outputting an open
ball” or “listing open balls” when we really mean that it produces an index ⟨i, j⟩ for a basic open ball,
or a list of such indices.

A name for a point x ∈ X is a list NX
x (in any order) of all basic open balls in X containing

x. If (X, dX) and (Y, dY) are two computable metric spaces, a function f : X → Y is computable
if there is a Turing functional which sends NX

x to NY
f(x) for all x ∈ X . A Cauchy name for a

point x is a sequence (xn) ⊂ D converging to x such that for all n, d(xn, xn+1) < 2−n. One can
compute a Cauchy name for x from NX

x by first finding a subsequence of basic open balls listed in
NX

x with exponentially decreasing radii, then taking their centers. Conversely, one can compute a
name NX

x from a Cauchy name: if (xn) is a Cauchy name for x and Bq(y) is any basic open ball, then
d(x, y) < q iff d(xn, y) < q − 2−n for some n, and the latter will be witnessed in finite time since by
assumption d(xn, y) is computable in the sense given above. Neither algorithm depends on x, and so
if f is computable in the above sense, then there is also a uniform computable procedure mapping a
Cauchy name for x to a Cauchy name for f(x) for all x. Every computable function is continuous.

K. Gill / Probabilistic automatic complexity 47

The real line R is a computable metric space with the usual Euclidean metric, taking D = Q.
A computable real number is a number having a computable Cauchy name, viewed as an element of
Baire space. If f, g : X → R are computable functions, then so are f + g, f − g, fg, max{f, g}, and
min{f, g}. In particular, by taking both f and g to be the identity map on R, we get that the function
(x, y) 7→ max{x, y} is computable. If given x ̸= y, one can also decide in finite time from their
Cauchy names which is larger.

A computable metric space X is computably compact if there is a computable function which
outputs a finite open cover of X by basic open balls of radius at most 2−n, given input n. If f : X → R
is computable and X is computably compact, then supx∈X f(x) and infx∈X f(x) are computable
numbers, and this is uniform in f (identifying f with an index for an oracle Turing machine mapping
x 7→ f(x)).

5.2.2. Proof of Theorem 5.3

For any k ≥ 2, let Ak denote the space of k-state PFAs over a fixed finite alphabet Σ, identified with
{0, . . . , b− 1}. To be precise, define

Ak =
{
(π⃗, P0, P1, . . . , Pb−1, η⃗) : π⃗ ∈ [0, 1]k is a probability vector,

each Pa is a k × k stochastic matrix, and η⃗ ∈ {0, 1}k
}
⊂ [0, 1]2k+bk2 .

(96)

If A ∈ Ak, write the components of A as π⃗A, PA
0 , . . . , PA

b−1, and η⃗A. Also write MA for the
vector (π⃗A, PA

0 , . . . , PA
b−1). We give Ak the uniform (maximum) distance d(·, ·), i.e., that induced

from the product topology on [0, 1]2k+bk2 . (The euclidean distance would work just as well.) Then
Ak is a computably compact metric space. There are several easy ways to see this, but we give a
direct proof for convenience. Let Qk be the set of rational k-state PFAs, that is, the set of A ∈ Ak

such that all entries of MA are rational, given as quotients of natural numbers. Clearly Qk has a
computable enumeration and is dense in Ak, and d(A,B) is computable for any A,B ∈ Qk, hence
Ak is a computable metric space. Then for any fixed n, one can enumerate all A ∈ Qk such that every
entry of MA is equal to j2−n−1 for some j ∈ {0, . . . , 2n+1}. The set of B2−n(A) for all such A is a
finite open cover of Ak by basic open balls of radius at most 2−n, so Ak is computably compact by
definition.

The function (A,w) 7→ ρA(w) is computable, because it is a polynomial in the entries of A re-
sulting from multiplication of π⃗A, η⃗A, and the matrices PA

a in an order determined by w. Therefore
(A,w) 7→ gapA(w) is the minimum of finitely many computable functions and hence itself com-
putable, as is A 7→ gapA(w) for any fixed w. Now let

Γk(w) = max
A∈Ak

gapA(w). (97)

For each k and w, Γk(w) is a computable real number, because it is equal to the supremum of the
computable function A 7→ gapA(w) over the computably compact space Ak. And since the procedure
to compute gapA(w) is uniform in w, the function (k,w) 7→ Γk(w) is computable. Finally, let

E = { (Γk(w), w) :2 ≤ k ≤ AD(w)− 1, w ∈ Σ∗, 0 < Γk(w) < 1 } ⊂ (0, 1)× Σ∗. (98)

48 K. Gill / Probabilistic automatic complexity

This will turn out to be exactly the set of discontinuities of AP,γ(w), and it can clearly be enumerated
by a single algorithm by definition. Proposition 3.1(ii) implies that AP,γ(w) is continuous at (0, w)
for all w. Continuity on the remainder of the complement of E will follow from the computability
argument below.

That E is countably infinite is a consequence of the following fact of potential independent interest,
whose proof establishes that in some sense, a 2-state PFA giving a gap of 1 to even a single word (with
more than three letters) behaves much like a DFA as far as AP is concerned.

Lemma 5.5. For any w with |w| ≥ 4, Γ2(w) = 1 iff w is constant.

Proof:
The right-to-left implication is immediate, since then AD(w) = 1 (or technically 2 if considering
DFAs over Σ with |Σ| ≥ 2, but this does not change the statement). For the other direction, assume
for sake of contradiction that w is nonconstant, and that Γ2(w) = 1 is witnessed by the IFS with
starting value x0 and maps fjx = aj + bjx for each letter j ∈ Σ. Then ρ(w) = 1 and ρ(y) = 0 for
every other y of length |w|, and if w = z⌢i where i ∈ Σ, then in particular fiρ(z) = 1 and fjρ(z) = 0
for all j ̸= i. Now, if the range of fi omits the value 0, then ρ(in) > 0 for all n, regardless of the
value of x0. Then either w is constant or gap(w) < 1, a contradiction, and we may thus assume the
range of fi includes both 0 and 1. By drawing a picture, one sees that only fix = x and fix = 1− x
are possible. If fix is the identity then only constant strings may be witnessed, so we can assume that
fix = 1− x.

If fix = 1 − x, then ρ(z) = f−1
i (1) = 0, so fj0 = 0 and thus fjx = bjx for all j ̸= i. We

can take bj < 1, as otherwise fj is the identity map and only constant strings can be witnessed. If
bj = 0 for some j, so that fj ≡ 0, then every string ending in ji has probability 1, thus maximal
probabilities are nonunique starting at length 3, a contradiction. Then 0 < bj < 1 for all j ̸= i, and
this means once an orbit leaves {0, 1} it can never return to either value. In particular, x0 ∈ {0, 1}.
If x0 = 0, then for all n ≥ 1 we have ρ(ji2n−1) = ρ((ji)2n) = 1 among even-length strings and
ρ(i2n+1) = ρ(j2i2n−1) = 1 among odd-length strings. If x0 = 1, then for all n ≥ 1 we have
ρ(i2n) = ρ(ij2n−2i) = 1 among even-length strings and ρ(ij2n−1i) = ρ(iji2n−1) = 1 among odd-
length strings. Either way, uniqueness of maxima is lost starting at length at most 4, so gap(w) < 1
and by contradiction the proof is complete. ⊓⊔

There are infinitely many nonconstant w with |w| ≥ 4 and AP (w) = 2, of course, by Theorem 4.1.
For such w, the lemma implies that 0 < Γ2(w) < 1, so that (Γ2(w), w) ∈ E and in particular E is
infinite.

We now show that AP,γ(w) is discontinuous on E and computable on the complement of E, mi-
nus the points with γ = 0. Endow Σ∗ with the discrete topology in its standard metrization, i.e.,
d(x, y) = 1 iff x ̸= y. Then we give [0, 1) × Σ∗ the product metric, that is, d ((α, x), (β, y)) =
max{|α− β| , dΣ∗(x, y)}. The codomain N of AP,γ(w) also has the discrete topology as a sub-
set of R. Now, AP,γ(w) is continuous at (γ,w) iff for all ε > 0 there is an η > 0 such that
d ((γ,w)− (γ′, w′)) < η implies

∣∣AP,γ′(w)−AP,γ(w)
∣∣ < ε—so that actually |γ − γ′| < η im-

plies AP,γ′(w) = AP,γ(w) (since Σ∗ and N both have the discrete topology). If γ = Γk(w) for some
k and w, then by definition of Γk there is no γ′ < γ such that AP,γ′(w) = AP,γ(w), because there

K. Gill / Probabilistic automatic complexity 49

is a k-state PFA having a gap greater than γ′ for w but not one having a gap greater than γ. Hence
AP,γ(w) is discontinuous at every point of E.

Finally, let (γ,w) /∈ E be given with γ ̸= 0. Under these hypotheses, for any k ≥ 2, we have
γ > Γk(w) if and only if AP,γ(w) > k, because in this case there is no A ∈ Ak exhibiting the required
gap. Conversely, γ < Γk(w) if and only if AP,γ(w) ≤ k. To compute AP,γ(w), then, decide for each
k = 2, 3, . . . , AD(w) whether γ or Γk(w) is greater. The least k such that γ < Γk(w) is exactly equal
to AP,γ(w). It is clear that this procedure does not depend on γ or w, and the proof of Theorem 5.3 is
complete. ⊓⊔

5.3. Proof of Theorem 5.1

We are now ready to finish the proof of Theorem 5.1 by showing that γ is definable in the language
L whenever (γ,w) ∈ E, where L was defined after the statement of Theorem 5.2 and E is given by
(98), so that Theorem 5.2 applies to every such γ. It will then follow that for every γ, either AP,γ is
computable outright, or it is oracle computable from a Cauchy name for γ. Let

ismaxgapk,w(g) ≡
(
∃ā
[
ispfak(ā) ∧ isgapk,w(g, ā)

])
∧

(
∀b̄

[
ispfak(b̄)→

n∨
i=1

(
pw(b̄)− pwi(b̄) ≤ g

)])
,

(99)

where all notation is as in the proof of Theorem 5.2. In words, this says there is a k-state PFA giving
w gap g and that all k-state PFAs give w gap at most g. Hence ismaxgapk,w(g) holds iff g = Γk(w).
A Gödel number for ismaxgapk,w can evidently be uniformly computed from k and w, and so we are
done. ⊓⊔

Remark 5.6. The proof of Theorem 5.2 can be adapted to show that many variants on AP and AP,γ

are computable. For example, one might change AP,γ to AP,≥γ by requiring a witness M to satisfy
gapM (w) ≥ γ rather than > γ, and then replace g1 > g2 in (93) by g1 ≥ g2 to show AP,≥γ is
computable for definable γ. The proof of Theorem 5.3 goes through verbatim for AP,≥γ , and one thus
recovers Theorem 5.1. Something similar can also be done for the variants discussed in Section 6.1
below.

6. Other approaches to probabilistic complexity

6.1. Relaxing the definition of a PFA

We saw earlier that AP shares the property of AD that the complexity of a string is not necessarily
equal to that of its reversal. In addition, there are strings whose PFA complexity is known to be
witnessed by a PFA with dead states. One might try to solve these problems by relaxing the definition
of a PFA to directly generalize an NFA (rather than a DFA). NFAs are allowed to have rows of all zeros
in their transition matrices, and also have the property that different out-transitions from the same state
and for the same letter are not weighted differently—they are simply all possible. The same applies to
the initial state distribution.

50 K. Gill / Probabilistic automatic complexity

To directly translate these properties to a generalization of a PFA, one would need to require that
all nonzero entries of π⃗ are equal, as well as the same for η⃗, and that all nonzero entries of all the
matrices Pa are equal to the same number (which may result in the row sums being different). One
can see that the proof of the first part of Proposition 3.4 can be recovered for the class N of such
automata. Since N is closed under switching π⃗ and η⃗ and taking the transpose of every transition
matrix, if ÃP is the corresponding complexity notion where ÃP (x) must be witnessed by a member
of N , then one has ÃP (

←−x) = ÃP (x) for all x. (Moreover ÃP (x) ≤ AN (x).) However, this is not a
very natural class of automata to consider and it is certainly not a generalization of a PFA.

Instead of trying to design a specific class of automata in an attempt to recover properties of AN ,
it might make more sense to define a unified complexity notion which takes as parameter a family of
automata and study its properties in general. In [27], Turakainen introduced generalized (probabilistic)
finite automata (GPFAs), which are finite-state automata whose operation is described as follows:

• The initial state of the machine is an arbitrary real row vector.

• Transitions between states are described by multiplication of arbitrary real square matrices.

• The final state of the machine is again an arbitrary real column vector.

So GPFAs are like PFAs except that the entries of π⃗, η⃗, and each Pa can be any real numbers. Tu-
rakainen proved the remarkable fact that GPFAs have in a sense the same descriptive power as PFAs: if
one also allows a cut-point in the context of a GPFA to be any real number, then the class of languages
accepted by GPFAs is exactly the class of stochastic languages.

This suggests that it is not too unreasonable to throw the gates open and consider a version of AP

that allows any GPFA. Let G be the set of all GPFAs. For any family F ⊆ G , let Fk be the set of
members of F having k states. Then define the F -automatic complexity of a word x ∈ Σ∗ to be

AF (x) = min{ k :∃F ∈ Fk such that gapF (x) > 0 }. (100)

For example, AP as defined before coincides with AA if A ⊂ G is the set of all PFAs. One can
also define AF ,γ for any γ ≥ 0 by analogy with AP,γ . We have that for all x,

AE (x) ≤ AF (x) whenever E ⊇ F , (101)

so that in particular AG (x) ≤ AF (x) for every F and x. We have not investigated AF in general,
and it is unclear how coarse of a measurement it might be. As a motivating question, we could ask

Question 6.1. Is AG (x) ≤ 2 for all binary strings x?

It is at least true that AG (x) = AG (
←−x) for all x, by the same observation we made above for

ÃP—and indeed AG ,γ(x) = AG ,γ(
←−x) for all x and γ ≥ 0, since one can simply switch π⃗ and η⃗ and

replace Pa with P T
a for all a to change a witness for AG ,γ(x) into one for AG ,γ(

←−x) while preserving
the acceptance probability of every word. Together with Proposition 3.3, whose proof goes through

K. Gill / Probabilistic automatic complexity 51

verbatim for AG ,γ , this implies that AG ,γ(xyz) ≥ AG ,γ(y) for all x, y, and z, like AD and AN .4

Theorem 5.2 also holds for AG simply by making ispfak(ā) true for all ā and all k.
A potentially helpful observation here is that the ability to have unbounded real entries does not

really confer any advantage as far as the complexity of individual strings is concerned. For any GPFA
M , if C is the largest absolute value of any entry of π⃗M , η⃗M , and the matrices PM

a , then one could
divide all these matrices and vectors by C to obtain a GPFA M ′ with entries in [−1, 1] such that

ρM (x) < ρM (y) ⇐⇒ ρM ′(x) < ρM ′(y) (102)

whenever |x| = |y|. Hence if S is the set of GPFAs whose entries are all in [−1, 1], we have
AS (x) = AG (x) for all x. In addition, the direct analogue of Theorem 5.3 holds for AS ,γ , because
Sk is now a computably compact metric space for each k (and each fixed alphabet), unlike Gk.

One advantage of AP that appears to be immediately lost in passing to AG or AS is the dimension
reduction of the IFS approach, and the dynamical analysis made more tractable by it. Since the
correspondence between PFAs and IFSs relies explicitly on the transition matrices being stochastic,
perhaps one could allow only generalized stochastic transition matrices, with any real entries permitted
as long as each row sums to 1. This notion would for example allow us to describe 0100 in two states
via

P0 =

(
−1 2

1/2 1/2

)
, P1 =

(
1/2 1/2

1 0

)
, π⃗ = (0, 1), η⃗ =

(
1

0

)
, (103)

whereas AP (0100) = 3, so strictly greater compression is achieved. This automaton is equivalent to
the IFS with f0(x) =

1
2 −

3
2x, f1(x) = 1− 1

2x, and x0 = 0. (Other strings with AP = 3 which have
complexity 2 according to this notion include 01000, 01011, and 01100.) Unfortunately, uniformly
rescaling the transition matrices as with S no longer works here, so the set of allowed transition
probabilities is unbounded and we lose uniform computability of the analogue of the two-variable
function (w, γ) 7→ AP,γ(w), i.e., the proof of Theorem 5.3 cannot be recovered. Of course, the proof
of Theorem 5.2 can still be easily modified to fit this case by simply dropping the requirement that
probabilities lie between 0 and 1 from the formula ispfak.

6.2. Gap structure function

We saw in the proof of Theorem 5.3 that the function Γk(w) mapping w to the maximum value of
gapM (w) among all k-state M is computable. It could be interesting to study w 7→ Γk(w) as a
parametrized complexity measure in itself. We have 0 ≤ Γ2(w) ≤ Γ3(w) ≤ · · · ≤ ΓAD(w)(w) = 1,
with Γk(w) = 0 if and only if k < AP (w). The number Γk(w) is never negative since one can
always make a PFA accepting every word with the same probability by setting all transition matrices
to the identity matrix. Furthermore, Proposition 3.3 implies Γk(z) ≥ Γk(wz) for all w, z, and k. This
comes close to justifying the empirical observation made in Section 3 that gaps tend to decrease for
longer words. A result to the effect that Γk(w) ≥ Γk(wz) would put the observation on fully rigorous
ground:
4This result can in fact already be recovered if one merely weakens the definition of a PFA to allow η⃗ to be an arbitrary
probability vector, like π⃗. Proceed in a similar way as in the proof of Proposition 3.3, except making M ′ have final vector
η⃗′ = PM (y)η⃗ while keeping its initial vector the same. Then one gets the analogue of AP,γ(xy) ≥ AP,γ(x) for all x, y, γ.

52 K. Gill / Probabilistic automatic complexity

Question 6.2. Is AP,γ(wz) ≥ AP,γ(w) for all w, z, and γ?

Intuitively, Γk(w) measures how well w is described by the model class of k-state PFAs—the
widest margin of probability by which w can be recognized by any such PFA. This relates it at least
philosophically to the Kolmogorov structure function, which measures the minimal size of a set of
strings containing w which can be described by a Turing machine of size at most k, and hence cap-
tures in a sense how well w can be singled out by such machines. Similar functions have also been
considered by Kjos-Hanssen [8], who introduced both a structure function and a dual structure func-
tion for the NFA complexity. His dual structure function is in part motivated by having a simple
domain and complicated range, rather than the other way around as with his regular structure function
for AN . This is even more true for Γk(w) in contrast with its dual AP,γ(w): it maps a string and natu-
ral number to a Cauchy name for a real number, rather than mapping a string and some representation
of a real to a natural number.

6.3. Least number of bits of a witness

Heuristically it appears that witnesses for the PFA complexity of many strings are relatively compli-
cated; this certainly seems to be the case for most strings with AP = 2, as pointed out below. If one is
interested solely in compression, it might make the most sense to measure the complexity of w as the
least number of bits required to describe an M having gapM (w) > 0, or perhaps gapM (w) > γ for
a parameter γ. One potential drawback of this approach is that it is not obvious whether this measure
is computable, although this depends on the precise definition used. The least number of bits also de-
pends on the choice of encoding, and so this measure would only be defined up to an additive constant,
like the Kolmogorov complexity. Not only that, but it could well be that the simplest PFAs achieving
a positive gap are very often DFAs, and in that case one could argue it is hardly a satisfying notion of
PFA complexity.

6.4. Measure of the set of witnesses

We conclude by mentioning one more idea for modifying AP and AP,γ , with the aim of refining the
numerical measurement itself. In the proof of for example Proposition 4.11, we saw that although
all strings 0n1m have complexity 2, as n increases, x0 must be chosen in a narrower and narrower
range in order for the IFS to witness 0n1m. The coefficient b must also be made arbitrarily close
(but not equal) to 1. Something similar is true of the other subcases of the proof of Theorem 4.3.
Thus it is in a sense more complicated to witness the complexity of a string the longer its prefix
is. So, we could introduce a real-valued complexity measure that accounts for that difference as
follows. Let µ be a Borel probability measure with full support on Ak, the space of k-state PFAs. Let
Gk(x) = gap•(x)

−1((0, 1]) be the set of k-state witnesses for AP (x) ≤ k, and let

Aµ(x) = AP (x) + 1− µ(Gk(x)). (104)

We can also let Gk
γ(x) = gap•(x)

−1((γ, 1]) and define

Aµ,γ(x) = AP,γ(x) + 1− µ(Gk
γ(x)). (105)

K. Gill / Probabilistic automatic complexity 53

Since gap is a computable function on a computably compact metric space, Gk(x) and Gk
γ(x) are

c.e. open, meaning the indices of all basic open balls contained in each of them can be computably
enumerated. In particular, all these sets have positive µ-measure if nonempty. Thus Aµ(x) assigns x a
value strictly between AP (x) and AP (x)+1, and Aµ,γ(x) is strictly between AP,γ(x) and AP,γ(x)+1.
Moreover, in at least the case of binary strings with AP (x) = 2, if x is a string such as 0n101 which
can only be witnessed by a PFA that also witnesses 0n1(01)m for all m, then those strings receive
exactly the same value of Aµ as x does. This makes sense, because these extensions of x in a sense
do not require any further effort to find a witness. The latter observation holds for any measure µ. The
goal in defining Aµ (or Aµ,γ) would then be to find a suitable µ which gives sets like Gk(x) (or Gk

γ(x))
large measure for strings like x = (01)n which are easy to witness, while giving smaller measure to
Gk(x) (or Gk

γ(x)) for strings whose witnessing automata require a more precise configuration.
A natural choice would be for µ to be induced by Lebesgue measure on the unit simplex in Rk−1,

identifying k-state PFAs with (k− 1)-dimensional affine IFSs as in Section 4.1. If |Σ| = b, one could
take the (bk + 1)-fold product of the (k − 1)-dimensional Lebesgue measure with itself, one for each
stochastic row vector in an element of Ak, and average it over the 2k − 2 connected components of
Ak corresponding to nontrivial choices of η⃗. The result is a fully supported computable probability
measure µ on Ak.

Question 6.3. Does this µ lead to satisfactory, and in particular computable, complexity measures Aµ

and Aµ,γ?

Question 6.4. How should the definitions of Aµ and Aµ,γ account for the fact that lower-complexity
strings are also witnessed by members of Ak? How should one deal with the likely problem of the
sets Gk(x) generally having high measure when AP (x) < k, which would make Aµ clustered near
k + 1 among strings having AP (x) = k?

References
[1] Gill K. Two studies in complexity. Ph.D. thesis, Penn State University, 2023.

[2] Diwan AA. A new combinatorial complexity measure for languages. Technical report, Computer Science
Group, Tata Institute, 1986.

[3] Bannai H, Hirayama M, Hucke D, Inenaga S, Jez A, Lohrey M, Reh CP. The smallest grammar
problem revisited. IEEE Trans. Inf. Theory, 2021. 67:317–328. doi:10.1109/TIT.2020.3038147.
arXiv:1908.06428.

[4] Shallit J, Wang Mw. Automatic complexity of strings. J. Autom. Lang. Comb., 2001. 6(4):537–554.
doi:10.25596/JALC-2001-537.

[5] Hyde K. Nondeterministic finite state complexity. Master’s thesis, University of Hawai’i, Manoa, 2013.

[6] Hyde K, Kjos-Hanssen B. Nondeterministic automatic complexity of overlap-free and almost square-free
words. Electronic J. Comb., 2015. 22(3):Paper 3.22. doi:10.37236/4851. arXiv:1402.3856 (updated
version, 2020).

[7] Kjos-Hanssen B. An incompressibility theorem for automatic complexity. Forum of Mathematics, Sigma,
2021. 9:paper e62. doi:10.1017/fms.2021.58. arXiv:1908.10843.

https://arxiv.org/abs/1908.06428
https://arxiv.org/abs/1402.3856
https://arxiv.org/abs/1908.10843

54 K. Gill / Probabilistic automatic complexity

[8] Kjos-Hanssen B. Kolmogorov structure functions for automatic complexity. Theoret. Comput. Sci., 2015.
607:435–445. doi:10.1016/j.tcs.2015.05.052. arXiv:1409.0584.

[9] Kjos-Hanssen B. Maximal automatic complexity and context-free languages. In: Aspects of Compu-
tation and Automata Theory with Applications, pp. 335–352. 2023. doi:10.1142/9789811278631 0013.
arXiv:2206.10130.

[10] Kjos-Hanssen B. On the complexity of automatic complexity. Theory Comput. Syst., 2017. 61:1427–1439.
doi:10.1007/S00224-017-9795-4. arXiv:1607.06106.

[11] Kjos-Hanssen B. Automatic complexity: A computable measure of irregularity. De Gruyter, 2024. doi:
10.1515/9783110774870.

[12] Rabin MO. Probabilistic automata. Inform. and Control, 1963. 6:230–245. doi:10.1016/S0019-9958(63)
90290-0.

[13] Chadha R, Sistla AP, Viswanathan M. Probabilistic automata with isolated cut-points. In: Chatter-
jee K, Sgall J (eds.), MFCS 2013 (LNCS, vol. 8087), pp. 254–265. Springer, 2013. doi:10.1007/
978-3-642-40313-2 24.

[14] Carlyle JW. Reduced forms for stochastic sequential machines. J. Math. Anal. Appl., 1963. 7:167–175.
doi:10.1016/0022-247X(63)90045-3.

[15] Vidal E, Thollard F, Higuera Cdl, Casacuberta F, Carrasco RC. Probabilistic finite-state machines—Part
I & II. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005. 27(7):1013–1039. doi:
10.1109/TPAMI.2005.147.

[16] Calude CS, Salomaa K, Roblot TK. Finite state complexity. Theoret. Comput. Sci., 2011. 412:5668–5677.
doi:10.1016/j.tcs.2011.06.021.

[17] Gill K. WeightedAutomata. doi:10.5281/zenodo.13821868. URL https://github.com/

nowheredense/weightedautomata.

[18] Paz A. Introduction to probabilistic automata. Academic Press, 1971. doi:10.1016/C2013-0-11297-4.

[19] Barnsley MF, Hurd LP. Fractal image compression. AK Peters, 1993. ISBN 978-1568810003.

[20] Culik II K, Dube S. Rational and affine expressions for image description. Discrete Appl. Math., 1993.
41:85–120. doi:10.1016/0166-218X(93)90031-I.

[21] Sprott JC. Automatic generation of iterated function systems. Comput. & Graphics, 1994. 18(3):417–425.
doi:10.1016/0097-8493(94)90042-6.

[22] Culik II K, Dube S. Affine automata and related techniques for generation of complex images. Theoret.
Comput. Sci., 1993. 116:373–398. doi:10.1016/0304-3975(93)90329-R.

[23] Rystsov IK. Affine automata and classical fractals. Cybernet. Systems Anal., 2018. 54(1). doi:10.1007/
s10559-018-0003-6.

[24] Kocić LM, Simoncelli AC. Cantor dust by AIFS. Filomat, 2001. 15:265–276. URL http://www.jstor.

org/stable/26453430.

[25] Marker D. Model theory: An introduction, volume 217 of Graduate Texts in Mathematics. Springer,
2002.

[26] Downey RG, Melnikov AG. Computably compact metric spaces. Bull. Symb. Log., 2023. 29(2):170–263.
doi:10.1017/bsl.2023.16. URL https://homepages.ecs.vuw.ac.nz/~melnikal/compcomp(BSL)

.pdf.

https://arxiv.org/abs/1409.0584
https://arxiv.org/abs/2206.10130
https://arxiv.org/abs/1607.06106
https://github.com/nowheredense/weightedautomata
https://github.com/nowheredense/weightedautomata
http://www.jstor.org/stable/26453430
http://www.jstor.org/stable/26453430
https://homepages.ecs.vuw.ac.nz/~melnikal/compcomp(BSL).pdf
https://homepages.ecs.vuw.ac.nz/~melnikal/compcomp(BSL).pdf

K. Gill / Probabilistic automatic complexity 55

[27] Turakainen P. Generalized automata and stochastic languages. Proc. Amer. Math. Soc., 1969. 21:303–309.
doi:10.2307/2036989.

	Introduction
	Preliminaries
	First results on AP
	Classification of binary strings with AP=2
	The iterated function system approach
	Proof of and , Theorem0 ??1 4.2
	Proof of and , Theorem0 ??1 4.1
	Further remarks

	Computability of probabilistic automatic complexity
	Computability for definable
	Computability for arbitrary
	Background in computable analysis
	Proof of and , Theorem0 ??1 5.1

	Proof of and , Theorem0 ??1 5.3

	Other approaches to probabilistic complexity
	Relaxing the definition of a PFA
	Gap structure function
	Least number of bits of a witness
	Measure of the set of witnesses

